BV SOLUTIONS OF DIRICHLET PROBLEM FOR A CLASS OF DOUBLY NONLINEAR DEGENERATE PARABOLIC EQUATIONS

Zhao Junning and Han Pigong (Department of Mathematics, Xiamen University, Xiamen 361005, China) (E-mail: jnzhao@jingxian.xmu.edu.cn) (Received Jan. 15, 2004)

Abstract The uniqueness and existence of BV solutions to Dirichlet problem of doubly degenerate parabolic equations of the following form

$$\frac{\partial u}{\partial t} = \operatorname{div}(A(|\nabla B(u)|)\nabla B(u)) \quad \text{in } Q_T = \Omega \times (0,T)$$

are studied

Key Words Doubly degenerate equations; Dirichet problem; BV solution.
2000 MR Subject Classification 35L65, 35L85, 35R35.
Chinese Library Classification 0175.26, 0175.29.

1. Introduction

In this paper, we study Dirichlet problem of the following form

$$\frac{\partial u}{\partial t} = \operatorname{div}(A(|\nabla B(u)|)\nabla B(u)) \quad \text{in } Q_T = \Omega \times (0,T)$$
(1.1)

$$u(x,t) = 0 \quad (x,t) \in \partial\Omega \times (0,T) \tag{1.2}$$

$$u(x,0) = u_0(x) \qquad x \in \Omega \tag{1.3}$$

where $\Omega \subset R^m$ is a bounded region with boundary $\partial \Omega$ appropriately smooth, $A, B \in C^1(R)$ and

$$A(s) = \int_0^s a(\sigma) d\sigma, \ B(s) = \int_0^s b(\sigma) d\sigma, \ a(s) \ge 0, \ b(s) \ge 0, \ b(0) = 0$$
(1.4)

Set $A^i(p) = A(|p|)p_i$, where $p = (p_1, \dots, p_m) \in \mathbb{R}^m$.

We assume

$$0 \le \frac{\partial A^{i}(p)}{\partial p_{j}} \xi_{i} \xi_{j} \le \Lambda |\xi|^{2} \qquad \forall \xi \in \mathbb{R}^{m}$$
(1.5)

$$\mu_1 |p|^q \le A(|p|) |p|^2 \le \mu_2(|p|^q + 1), \quad A'(s) \ge 0$$
(1.6)

where $q \geq 2, \Lambda, \mu_1, \mu_2$ are positive constants.

Dirichlet problem (1.1)-(1.3) arises from a variety of diffusion phenomena appeared widely in nature. The Newtonian filtration equations

$$\frac{\partial u}{\partial t} = \Delta \varphi(u), \quad \varphi'(s) \ge 0$$
 (1.7)

and non-Newtonian filtration equations

$$\frac{\partial u}{\partial t} = \operatorname{div}(|\nabla u^m|^{p-2}\nabla u^m) \quad p \neq 2$$
(1.8)

are the special cases of (1.1). Since we only suppose $B'(s) \ge 0$, in general the solution of (1.1)-(1.3) is not continuous and the sense of satisfying the boundary value condition for the solution is also special (see[1]). When $A(s) \equiv 1$, the existences of BV solution to Cauchy problem and Dirichlet problem of (1.1) have been studied(see [2-4]). The existence and uniqueness of solutions with compact support for a class of doubly nonlinear degenerate parabolic equations are considered in [5]. In this note we will investigate the solvability of (1.1)-(1.3) in $BV(Q_T)$ when A(s) satisfies (1.5) and (1.6). In the proof of existence of solution, we use some ideas in [3]. But there are many difficulties to need overcome since (1.1) is degenerate at the points where $A(|\nabla u|) = 0$. The paper is constructed as follows. We first define solutions of the Dirichlet problem (1.1)-(1.3) in Section 2. Subsequently in Section 3 we establish some estimates for the solutions of regularized problem. On the basis of these estimates, we then prove the existence of solutions in Section 4. Section 5 is devoted to study the uniqueness and stability of solution.

2. Main Results

Let Γ_u be the set of all jump points of $u \in BV(Q_T)$, ν be the normal of Γ_u at $X = (x, t), u^+(X)$ and $u^-(X)$ the approximate limits of u at $X \in \Gamma_u$ with respect to $(\nu, Y - X) > 0$ and $(\nu, Y - X) < 0$ respectively(see[6]).

Definition 2.1 A function $u \in BV(Q_T) \cap L^{\infty}(Q_T)$ is said to be a generalized solution of Dirichlet problem (1.1)-(1.3) if the following conditions are fulfilled

- 1. $(B(u))_t \in L^2(Q_T), \quad (B(u))_{x_i} \in L^q(Q_T), \quad i = 1, 2, \cdots, m;$
- 2. for almost all $t \in \Omega$ $\gamma u(x, 0) = u_0(x)$ where γu is the trace of u;
- 3. for almost all $t \in (0,T)$ $B(\gamma u) = 0$ a.e. on $\partial \Omega$;
- 4. *u* satisfies

$$\iint_{Q_T} \left\{ |u - k| \frac{\partial \varphi_1}{\partial t} - \operatorname{sgn}(u - k) A(|\nabla B(u)|) \nabla B(u) \cdot \nabla \varphi_1 \right\} dx dt + \iint_{Q_T} \operatorname{sgn}k \left\{ u \frac{\partial \varphi_2}{\partial t} - A(|\nabla B(u)|) \nabla B(u) \cdot \nabla \varphi_2 \right\} dx dt \ge 0$$
(2.1)