EXISTENCE AND UNIQUENESS OF BV SOLUTIONS FOR THE POROUS MEDIUM EQUATION WITH DIRAC MEASURE AS SOURCES

Yuan Hongjun (Department of Mathematics, Jilin University, Changchun 130012, China) (E-mail: hjy@mail.jlu.edu.cn) Jin Yang (School of Statistics, Renmin University of China, Beijing 100872, China) (E-mail: jinyange_mail@sina.com)

(Received Apr. 27, 2004)

Abstract The aim of this paper is to discuss the existence and uniqueness of solutions for the porous medium equation

 $u_t - (u^m)_{xx} = \mu(x)$ in $(x,t) \in \mathbb{R} \times (0,+\infty)$

with initial condition

$$u(x,0) = u_0(x) \qquad x \in (-\infty, +\infty),$$

where $\mu(x)$ is a nonnegative finite Radon measure, $u_0 \in L^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ is a nonnegative function, and m > 1, and $\mathbb{R} \equiv (-\infty, +\infty)$.

Key Words BV solution; porous medium equation; existence and uniqueness.
2000 MR Subject Classification 35K45, 35K55, 35K65.
Chinese Library Classification 0175.29.

1. Introduction

In this paper we consider the porous medium equation

$$u_t - (u^m)_{xx} = \mu(x) \qquad \text{in} \quad Q \tag{1.1}$$

with initial condition

$$u(x,0) = u_0(x) \qquad x \in \mathbb{R}, \tag{1.2}$$

where $\mu(x)$ is a nonnegative finite Radon measure, $u_0 \in L^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ is a nonnegative function, $m > 1, Q \equiv \mathbb{R} \times (0, +\infty)$.

We denote

$$M_0 \equiv ||u_0||_{L^{\infty}(\mathbb{R})} + 1, \quad M_1 \equiv \int_{\mathbb{R}} d\mu$$

in this paper.

Clearly, the Cauchy problem (1.1)–(1.2) has no classical solutions in general. Therefore we consider its weak solutions.

Definition 1.1 A nonnegtive function $u : Q \mapsto \mathbb{R}$ is said to be a solution of (1.1) if u satisfies the following conditions [H1] and [H2]:

[H1] For all $T \in (0, +\infty)$, we have

$$u \in L^{\infty}(0,T; L^1(\mathbb{R})) \cap BV_t(Q_T \setminus Q_s),$$

and

$$u(\cdot, t) \in C^{\alpha}(R) \quad \forall t \in (0, T)$$

with $s \in (0,T)$, where $Q_T \equiv \mathbb{R} \times (0,T)$.

[H2] For any $\phi \in C_0^{\infty}(Q_T)$, we have

$$\int \int_{Q_T} (-u\phi_t - u^m \phi_{xx}) dx dt = \int \int_{Q_T} \phi(x, t) \mu(x) dx dt.$$

Definition 1.2 A nonnegative function $u: Q \mapsto (0, +\infty)$ is said to be a solution of (1.1)-(1.2) if u is a solution of (1.1) and satisfies the initial condition (1.2) in the following sense:

$$ess \lim_{t \to 0^+} \int_{\mathbb{R}} \psi(x) u(x,t) dx = \int_{\mathbb{R}} \psi(x) u_0(x) dx, \quad \forall \psi \in C_0^{\infty}(\mathbb{R}).$$

Our main results are the following theorems.

Theorem 1.1 The Cauchy problem (1.1)–(1.2) has a unique a solution u = u(x,t) satisfying

$$u(x,t) \le \frac{C}{t^{m-\delta}} \qquad \forall (x,t) \in Q_T$$

for all $\delta \in (0,1)$, where C is a positive constant depending only on δ , m, M_0 and M_1 .

Such kind of results has been obtained by a number of authours, for example, see [1-11].

Remark 1.1 The proof of the existence in Theorem 1.1 is different from that of [1-8], it is based some BV estimates. In particular, the uniqueness in Theorem 1.1 is very interesting and is also different from that of [9-11].

In addition, we have

Theorem 1.2 Assume that u is the solution of (1.1)-(1.2). Then we have

$$|u(x_1, t) - u(x_2, t)| \le C|x_1 - x_2|^{\beta}$$

for all $x_i \in \mathbb{R}(i = 1, 2)$ and all $t \in (\tau, +\infty)$, where $\beta \in (0, 1)$ and C > 0 are some positive constants depending only on τ , M_0 and M_1 .

The proofs of Theorem 1.1–1.2 are completed in Section 3–5. In proving process we shall use some uniform estimates in Section 2.