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Abstract In the present paper, the existence of solutions to Cauchy problem for
modified Landau–Lifshitz Model initiated by Augusto Visintin is studied.
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1. Introduction

Ferromagnetic materials can attain a large magnetization under the action of a small
applied magnetic field. To explain this phenomenon, in 1907 Weiss suggested that any
small portion of the body exhibits a spontaneous magnetization and is magnetically
saturated even if no magnetic field is applied. In 1928 Heisenberg explained the sponta-
neous magnetization postulated by Weiss in terms of the exchange interaction. In 1935
Landau and Lifshitz [1] proposed a quantitative theory, now known as micromagnetics.

In the classical study of 1-dimensional motion of ferromagnetic chain, the so-called
Landau-Lifshitz equation for the isotropic Heisenberg chain is a special case of the
generalized systems

Mt = M ×Mxx + f(x, t, M) (1.1)

and such an equation usually appears in the study of pure material. In the past years a
lot of works contributed to the study of the soliton solution, the interaction of solitary
waves and others for the Landau-Lifshitz equation in [2 − 5]. Generally speaking, the
existence of global weak solutions for initial-boundary value problems and the Cauchy
problem of the generalized system of ferromagnetic have been established in [6− 8].

The system of Heisenberg spin chain

Mt = M ×Mxx, (1.2)

also called the Landau-Lifshitz equation, is proposed to describe the evolution of spin
field in continuous ferromagnets. In [9], Sulem, Sulem and Bardos studied the well-
posedness for the Cauchy problem of the system (1.2). In [10], Zhou, Guo and Tan
have gotten existence and uniqueness of smooth solution for the system (1.2).
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The above discussion is referred to a perfect crystal and does not allow the presence
of magnetic inclusions: impurities, dislocations and other defects. This also covers the
case where magnetic inclusions are regularly distributed; a typical example is steel. In
[11] Augusto Visintin proposed to describe the effect of defects on evolution by means
of modification of the Landau-Lifshitz equation, i.e.





Mt = M × (Mxx − ηMt

|Mt|),
M(x, 0) = M0(x),

(1.3)

where η is a positive constant to account for the average distribution of defects in
the material. For a nonhomogeneous material, η may depend on x , and may be
also replaced by a 3 × 3-tensor to account for anisotropy. In this paper for simplicity
η =constant is discussed. But the argument used here also works for the case η = η(x).

In order to avoid singularity of (1.3) where Mt = 0, with W = Mxx− ηMt√
ε2+ | Mt |2

we first study its regularized problem

{
Mt = M ×W,

M(x, 0) = M0(x).
(1.4)

Following [12], we introduce Gilbert damping to (1.4) and consider the following prob-
lem {

Mt = M ×W − αM × (M ×W ), (t, x) ∈ (0, T ]× Ω,

M(x, 0) = M0(x), x ∈ Ω,
(1.5)

where T is a positive constant and Ω = [−1, 1]. According to the classical theory of
Weiss, |M(x, t)| = 1. Hence (1.5) is equivalent to the following problem

{
Mt = M ×W + αW + α|Mx|2M, (t, x) ∈ (0, T ]× Ω,

M(x, 0) = M0(x), x ∈ Ω.
(1.6)

Our sketch is as follows. Firstly, we establish certain a priori α-independent esti-
mates for the solutions of the problem (1.6), which allow us to obtain a sufficient smooth
solution to Cauchy problem for the problem (1.4) by passing to the limit α → 0. Sec-
ondly, the existence of the sufficient smooth solution for the problem (1.6) is proved by
using the fixed point theorem and α−independent estimates.

Throughout the present paper all the positive constants depending only on η,
‖M0‖Hk(Ω), T , independent of α and ε, unless otherwise stated, will be denoted by
C and they may be different from line to line.

Theorem Suppose M0(x) is in Hk(Ω), k ≥ 4 with |M0(x)| = 1 and M0(−1) =
M0(1), then for any positive constant T ,


