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Abstract In this note we verify the key inequality Y1(M) < Y1(Sn) for the Yam-
abe constant Y1(M) for manifolds M not conformal to the unit sphere, by using a
solution to an associated equation as a test function.
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Let (M, g0) be a compact, smooth, orientable Riemannian manifold of dimension
n ≥ 3. Denote by R = Rg the scalar curvature and by [g0] = {g | g = u4/(n−2)g0}
the set of metrics conformal to g0. The Yamabe problem is to find a solution to the
equation

¤u =: −∆u +
n− 2

4(n− 1)
Ru = λu

n+2
n−2 , (1)

where λ is a constant, which is positive if the Yamabe constant

Y1(M) = inf
g∈[g0]

Q(g)

is positive. We denote

Q(g) =
∫

M
Rg dµg/V (n−2)/n

g ,

where Vg is the volume of (M, g) and dµg is the volume element. Based on the earlier
works [1-3], the Yamabe problem was finally solved in [4]. A key ingredient is to verify

Y1(M) < Y1(Sn) (2)

for manifolds with positive Yamabe constant which are not conformal to the unit sphere
Sn with standard metric.
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Inequality (2) was verified by Aubin [1] for manifolds of dimensions n ≥ 6 not locally
conformally flat, and by Schoen [4] for the remaining cases. The proofs in [1, 4] were
unified in [5] by introducing the conformal normal coordinates. In this note we verify
the inequality (2) by using a solution to an associated equation (see (11) below) rather
than the usual test function. The advantage of this proof is that it also applies to the
Yamabe problem for higher order curvatures [6], where it is complicated to construct
an explicit admissible test function.

For a given point 0 ∈ M, choose a conformal metric, which we may assume is g0

itself [5, 7], such that in the normal coordinate of g0, R(0) = 0, ∇R(0) = 0 and

∆R(0) = −1
6
|W (0)|2, (3)

det (g0)ij ≡ 1 near 0, (4)

where W (0) is the Weyl tensor at 0. For formula (4), see [8, 9] or p.159 of [7]. Denote
by r the geodesic distance from x to 0, and Bρ the geodesic ball with center 0 and
radius ρ. Since the Yamabe constant Y1(M) is positive, the Green function G at 0 is
unique, that is G is the unique solution to the equation

¤G = (n− 2)ωn−1δ0, (5)

where δ0 is Dirac measure at 0, and ωn−1 is the area of the sphere Sn−1.

Lemma 1[5] Suppose M is not conformal to the unit sphere Sn. Then the Green
function G has the asymptotic behavior

G(x) = r2−n + ζ(x), (6)

where ζ = o(r2−n) is a function satisfying

ζ ≥ A− c0 R,ij(0)xixjr
4−n near 0, (7)

where A is a positive constant, c0 = 0 if n ≤ 6 or M is locally conformally flat; and c0

is a positive constant in the remaining cases (in this case we assume |W (0)| 6= 0).
A more precise estimate of ζ can be found in [5], see also [10]. Recently Christ and

Lohkamp announced a proof of the positive mass theorem for all dimensions. Hence
one can choose c0 = 0 in (7). But we will not use it here. Now let

vε(x) =
( ε

ε2 + r2

)n−2
2 ,

where ε is a small positive constant. Note that in a normal coordinate, under condition
(4), the Laplacian ∆ on M is equal to the Euclidean Laplacian when applying to
functions of r alone, hence we have

−∆vε = n(n− 2)v
n+2
n−2
ε in Bρ0 (8)


