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Abstract In this paper, we establish the existence of global self-similar solutions
for the heat and convection-diffusion equations. This we do in some homogeneous Besov
spaces using the theory of Besov spaces and the Strichartz estimates. Further, the
structure of the self-similar solutions has also been established by using an equivalent
norm for Besov spaces.
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1. Introduction

In this paper we study the existence and regularity of global self-similar solutions
of the Cauchy problem for the semi-linear heat equation

ut −4u = µuα+1, u(0, x) = f(x) (1.1)

and the Cauchy problem for the convection-diffusion equation

∂tu−4u = ~a · ∇(|u|αu), u(0, x) = f(x), (1.2)

where µ ∈ R, ~a ∈ Rn \ {0}, α > 0, u = u(t, x) is a real-valued function defined on
R+ × Rn and the initial data f is a real-valued function.
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Self-similar solutions have been studied for other semilinear evolution equations
such as the semilinear wave equation [1-4], the Navier-Stokes equations [5, 6] and the
Schroedinger equations [7-10]. They often describe the large time behavior of general
global solutions to the evolution equations under certain conditions. For example, it
was shown in [6] that self-similar solutions for the Navier-Stokes equations constructed
by Cannone [5] provide the large time asymptotic behavior of the global solutions.

A solution u(t, x) of (1.1) or (1.2) is called a self-similar solution if for λ > 0,

u(t, x) = λ
2
α u(λ2t, λx).

It is easy to verify that u is a self-similar solution if and only if

u(t, x) = t−
1
α u

(
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x√
t

)
= t−

1
α V

(
x√
t

)

for some function V (x) called the profile of the self-similar solution u. Thus the Self-
similar solution to nonlinear evolution equations can be studied through the study
of the associated semi-linear elliptic equations for V (x). However, it is usually very
difficult to solve such nonlinear elliptic equations. On the other hand, the initial data
for self-similar solutions must satisfy, for λ > 0,

f(x) = λ
2
α f(λx). (1.3)

This leads to another way of looking for self-similar solutions of (1.1) or (1.2) by the
study of small global well-posedness in some suitable function spaces of the Cauchy
problem (1.1) or (1.2) with initial data f satisfying (1.3). These new global solutions
admit a class of self-similar solutions. However, the condition (1.3) means that f is
homogeneous degree −2/α. Such homogeneous functions, in general, do not belong to
the usual spaces such as the usual Sobolev space Hs,p, where the global well-posedness
of the Cauchy problem holds. Thus, in order to construct self-similar solutions for
evolution equations such as (1.1) or (1.2) we have to choose a suitable homogeneous
Banach space X of degree −2/α and to show that the problem generates a global flow
in X.

The well-posedness of the Cauchy problem for the heat equation (1.1) has been
studied by many authors. For example, the existence and uniqueness of solutions have
been studied in [7, 11-16] for the case when the initial data is in Sobolev spaces and in
[17] for the case when the initial data is in Besov spaces. Self-similar solutions have also
been dealt with for the heat equation (1.1) in [18, 14] by the study of the associated
elliptic problem and in, e.g. [7] by studying the Cauchy problem. In [19, 20], the global
solutions of the nonlinear heat equation have been shown to be asymptotically close
to its self-similar solution. On the other hand, the global well-posedness including the
large time behavior of the solution has been proved for the convection-diffusion (1.2) in
[21], whilst the existence of positive self-similar solutions for (1.2) has been established
in [22] in the case when α = 1/n through the study of the associated elliptic problem.


