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Abstract Global existence of small amplitude solution and nonlinear scattering
result for the Cauchy problem of the generalized IMBq equation were considered in the
paper titled “Small amplitude solutions of the generalized IMBq equation” [1]. It is a
pity that the authors overlooked the bad behavior of low frequency part of S(t)ψ which
causes troubles in L∞ and Hs estimates. In this note, we will present a new proof of
global existence under same conditions as in [1] but for space dimension n ≥ 3.

Key Words IMBq equation; Duhamel’s principle; Hölder inequality; Gronwall
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1. Introduction

In the paper titled “Small amplitude solutions of the generalized IMBq equation”
[1], global existence of small amplitude solution and scattering theory for the Cauchy
problem of the generalized IMBq equation

{
utt −∆utt −∆u = ∆f(u),

u(0) = ϕ(x), ut(0) = ψ(x)
(1.1)

were considered, where u(x, t) denotes the unknown function, f(u) is the given nonlinear
function, ϕ(x) and ψ(x) are the given initial data, subscript t indicates the partial
derivative with respect to t, ∆ denotes the Laplace operator in Rn. For the physic
background and researches of the IMBq equation, one may refer the readers to [1-4]
and the references therein.

Through combining the factors with functions respectively, the authors used the
special case of Lemma 2.1 with F ≡ 1 to deal with three terms of the right hand side
of (2.2) below to get the estimates for linearized equation. Together with the estimates
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for the nonlinearity f(u), global existence of small amplitude solution for (1.1) followed
by the usage of Banach fixed point Theorem.

It is a pity that the authors overlooked the infinity of the factor
√

1+|ξ|2
|ξ| (ξ → 0) in

the dealing with the low frequency part of S(t)ψ, using

‖(I −∆)
1
2 (−∆)−

1
2 ψ‖L1 + ‖(I −∆)

1
2 (−∆)−

1
2 ψ‖Hs ≤ C(‖ψ‖L1 + ‖ψ‖Hs) (1.2)

which is not correct to prove Lemma 2.4 of [1].
In this paper, we deduce Lemma 2.1 for general F (ξ) = F (|ξ|) = F (r) instead of

F ≡ 1 on the basis of Van der Corput Lemma. Note that
√

1+|ξ|2
|ξ| is L1 and L2 in

multi-dimensional case. Through different choices of F (ξ), we deal with three terms in
the RHS of (2.2) differently to get the estimates for linearized equation. Together with
the estimates obtained in [1] for f(u), we finally get the result of the present paper
without any other additional condition on initial data.

2. Some Estimates

Firstly, let’s consider the linearized equation
{

utt −∆utt −∆u = ∆g(x, t),

u(0) = ϕ(x), ut(0) = ψ(x)
(2.1)

of (1.1). By Duhamel’s principle, the solution of (2.1) can be written as

u(x, t) = ∂tS(t)ϕ(x) + S(t)ψ(x) +
∫ t

0
T (t− τ)g(x, τ)dτ (2.2)

where T (t) = S(t)(I −∆)−1∆, and

∂tS(t)ϕ(x) = (2π)−n

∫

Rn

eix·ξcos
t|ξ|√

1 + |ξ|2 ϕ̂(ξ)dξ, (2.3)

S(t)ψ(x) = (2π)−n

∫

Rn

eix·ξ
√

1 + |ξ|2
|ξ| sin

t|ξ|√
1 + |ξ|2 ψ̂(ξ)dξ, (2.4)

∫ t

0
T (t− τ)g(x, τ)dτ

= −(2π)−n

∫ t

0

[ ∫

Rn

eix·ξ |ξ|√
1 + |ξ|2 sin

(t− τ)|ξ|√
1 + |ξ|2 ĝ(ξ, τ)dξ

]
dτ (2.5)

with f̂(ξ) =
∫
Rn e−ix·ξf(x)dx.

As in [4], in order to estimate u(x, t), we still need the following lemma derived on
the basis of Van der Corput lemma [5,6] to deal with the medium parts of all three
terms in the right hand side of (2.2).


