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Abstract The compressible Euler equations with dissipation and/or dispersion

correction are widely used in the area of applied sciences, for instance, plasma physics,

charge transport in semiconductor devices, astrophysics, geophysics, etc. We consider

the compressible Euler equation with density-dependent (degenerate) viscosities and

capillarity, and investigate the global existence of weak solutions and asymptotic limit.
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1. Introduction

In the area of applied sciences, like plasma physics, transport of charged parti-

cles, astrophysics, geophysics, etc, the compressible Euler equations with additional

dissipation of the form

∂tn+ ∇ · (nu) = 0, (1.1)

∂t(nu) + ∇ · (nu⊗ u) + ∇p(n) = ρF + fdis, (1.2)

are often used to simulate the dynamical behaviors of physical observable like the

density n > 0, velocity u, momentum J = nu, and energy e = e(n, u). Here, the

Eq. (1.1) and (1.2) respectively express the conservation of mass and the balance of

momentum. The force F is taken as the gradient filed of some potential F = −∇Φ,
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where Φ represents either electrostatic potential or gravity, and can be determined by

the self-consistent Poisson equation

λ∆Φ = n (1.3)

with λ = ∓1. The term fdis in (1.2) is chosen based on the different effects caused by the

specific physical (dissipative or dispersive) mechanism, like drag friction (lubrication)

−n|u|u in the motion of shallow water [1], dispersion effects ε2

2 ∇(
∆
√

ρ√
ρ ) with ε > 0 the

scaled Planck constant in quantum mechanics [2], Korteweg term εn∇∆n with ε > 0

small parameter in phase transition [1], viscosity µ∆u or µ∇(n∇u) with µ viscosity

coefficient in fluid-dynamics [3, 4], and so on.

The aim of this paper is to study the dissipative and dispersive approximation to

the hydrodynamical system (1.1)–(1.2) as follows

∂tn+ div(nu) = 0, (1.4)

∂t(nu) + div(nu⊗ u) + ∇p(n) + n∇Φ

= ε2n∇(ϕ′(n)∆ϕ(n)) + 2ηdiv (µ(n)D(u)) + η∇(λ(n)divu) − rn|u|u, (1.5)

where the right hand side terms in (1.5) consist of viscosity, dispersion and nonlinear

friction, corresponding to the term fdis in (1.2), and D(u) = (∇u+ t∇u)/2 is the stress

tensor with degenerate viscosities µ(n) ≥ 0, λ(n), and η > 0 a small parameter, which

is zero in the appearance of vacuum n = 0. The nonlinear dispersion term is also taken

into accounted with ϕ(n) ≥ 0 and ε > 0 a small parameter, and the nonlinear term

−rn|u|u represents a drag friction with r > 0 a constant. The internal electrostatic

potential Φ is chosen through the self-consistent Poisson equation

−∆Φ = n− 1. (1.6)

We consider the initial value problem of the approximate system (1.4)–(1.5) in T
N

with initial data

n(x, 0) = n0(x), nu(x, 0) = m0(x), x ∈ T
N , (1.7)

which satisfies

n0 ≥ 0 a.e. on T
N ,

∫

n0(x)dx = 1, and
|m0|2
n0

= 0 a.e. on {n0(x) = 0}. (1.8)

The motivation to consider the approximate system (1.4)–(1.6) is the follows. Re-

cently, the quantum hydrodynamic (QHD) model

∂tn+ ∇ · (nu) = 0, (1.9)

∂t(nu) + ∇ · (nu⊗ u) + ∇p(n) = n∇Φ +
ε2

2
n∇(

△√
n√
n

), (1.10)


