J. Partial Diff. Eq. May 2009

Existence Results for a Class of Semilinear Elliptic Systems

MOUSSAOUI Abdelkrim^{1,*} and KHODJA Brahim²

¹ Department of Biology, A. Mira Bejaia University, 06000 Bejaia, Algeria.

² Department of Mathematics, Badji-Mokhtar Annaba University, B.P 12, 23000 Annaba, Algeria.

Received 21 June 2008; Accepted 6 February 2009

Abstract. In this paper, we study the existence of nontrivial solutions for the problem

 $\begin{cases} -\Delta u = f(x, u, v) + h_1(x) & \text{in } \Omega, \\ -\Delta v = g(x, u, v) + h_2(x) & \text{in } \Omega, \\ u = v = 0 & \text{on } \partial \Omega, \end{cases}$

where Ω is bounded domain in \mathbb{R}^N and $h_1, h_2 \in L^2(\Omega)$. The existence result is obtained by using the Leray-Schauder degree under the following condition on the nonlinearities *f* and *g*:

$$\begin{cases} \lim_{s,|t|\to+\infty} \frac{f(x,s,t)}{s} = \lim_{|s|,t\to+\infty} \frac{g(x,s,t)}{t} = \lambda_+, & \text{uniformly on } \Omega, \\ \lim_{-s,|t|\to+\infty} \frac{f(x,s,t)}{s} = \lim_{|s|,-t\to+\infty} \frac{g(x,s,t)}{t} = \lambda_-, & \text{uniformly on } \Omega, \end{cases}$$

where $\lambda_+, \lambda_- \notin \{0\} \cup \sigma(-\Delta), \sigma(-\Delta)$ denote the spectrum of $-\Delta$. The cases (*i*) where $\lambda_+ = \lambda_-$ and (*ii*) where $\lambda_+ \neq \lambda_-$ such that the closed interval with endpoints λ_+, λ_- contains at most one simple eigenvalue of $-\Delta$ are considered.

AMS Subject Classifications: Primary 35J55, 15A15; Secondary 05A15, 15A18

Chinese Library Classifications: O175.25, O175.29

Key Words: Elliptic systems; homotopy; topological degree.

http://www.global-sci.org/jpde/

^{*}Corresponding author. Email addresses: remdz@yahoo.fr (A. Moussaoui), bmkhodja@yahoo.fr (B. Khodja)

1 Introduction and main results

The question of the existence of solutions of semilinear elliptic systems of the form

$$\begin{cases} -\Delta u = f(x, u, v) & \text{in } \Omega, \\ -\Delta v = g(x, u, v) & \text{in } \Omega, \end{cases}$$
(1.1)

subject to zero Dirichlet boundary conditions, has been the object of intensive research recently and different situations on the structure of the nonlinearities f and g are studied; see for example [1–6] and references therein.

The study of this type of problem is motivated by its various applications, for example, in reaction-diffusion equations (where the steady state equations are elliptic systems), in newtonian fluids and in the study of torsional creep (see [7]).

In this work, we are concerned with the existence of nontrivial solutions for the following class of elliptic systems

$$\begin{cases}
-\Delta u = f(x, u, v) + h_1(x) & \text{in } \Omega, \\
-\Delta v = g(x, u, v) + h_2(x) & \text{in } \Omega, \\
u = v = 0 & \text{on } \partial\Omega,
\end{cases}$$
(1.2)

where Ω is a bounded domain in \mathbb{R}^N ($N \ge 3$) with smooth boundary $\partial \Omega$ and $h = (h_1, h_2)$ is $(L^2(\Omega))^2$ nonnull function. We assume that

$$f,g: \Omega \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

are continuous functions satisfying the condition below:

$$\begin{cases} |f(x,s,t)| \le C_1(1+|s|+|t|), \quad \forall s,t \in \mathbb{R}, \text{ a.e. } x \in \Omega, \\ |g(x,s,t)| \le C_2(1+|s|+|t|), \quad \forall s,t \in \mathbb{R}, \text{ a.e. } x \in \Omega, \end{cases}$$
(1.3)

where C_1, C_2 are positive constants. Problem (1.2) is supposed to be nonvariational, that is, the conditions defined below are not satisfied by the nonlinearities f and g.

Definition 1.1. We say that the system (1.2) is variational if either one of the following conditions holds:

1. There is a real-valued differentiable function F(x,u,v) for $(x,u,v) \in \overline{\Omega} \times \mathbb{R} \times \mathbb{R}$ such that

$$\frac{\partial F(x,u,v)}{\partial u} = f(x,u,v), \quad \frac{\partial F(x,u,v)}{\partial v} = g(x,u,v).$$

In this case, the system is said to be of Gradient type.

2. There is a real-valued differentiable function H(x,u,v) for $(x,u,v) \in \overline{\Omega} \times \mathbb{R} \times \mathbb{R}$ such that

$$\frac{\partial H(x,u,v)}{\partial u} = g(x,u,v), \quad \frac{\partial H(x,u,v)}{\partial v} = f(x,u,v).$$

In this case, the system is said to be of Hamiltonian type.