doi: 10.4208/jpde.v24.n2.4 May 2011

Seiberg-Witten Like Monopole Equations on \mathbb{R}^5

DEĞIRMENCI Nedim*and KARAPAZAR Senay

Department of Mathematics, Anadolu University, Eskisehir, Turkey.

Received 26 April 2010; Accepted 28 February 2011

Abstract. We give an analogy of Seiberg-Witten monopole equations on flat Euclidian space \mathbb{R}^5 . For this we used an irreducible representation of complex Clifford algebra $\mathbb{C}l_5$. For the curvature equation we use a kind of self-duality notion of a 2-form on \mathbb{R}^5 which is given in [1].

AMS Subject Classifications: 15A66, 58Jxx **Chinese Library Classifications**: 0175.27

Key Words: Seiberg-Witten equations; spinor; Dirac operator.

1 Introduction

Seiberg-Witten monopole equations were defined on 4-dimensional Riemannian manifolds in 1994 by E. Witten (see [2]). These are a couple of non-linear partial differential equations on a 4-dimensional Riemannian manifold and give differential topological invariants for the underlying 4-manifold (see [3]). In recent years some generalizations of Seiberg-Witten equations to higher dimensional manifolds are studied by various authors (see [4–7]). The purpose of this article is to write down similar equations on \mathbb{R}^5 .

2 Some basic materials

2.1 *spin^c*-structure and Dirac operator on \mathbb{R}^n

Definition 2.1. The vector space of complex *n*-spinors is the complex vector space $S = \mathbb{C}^{2^k}$ with the hermitian inner product, where k = n/2 if *n* is even or k = (n-1)/2 if *n* is odd. A spin^c-structure on the Euclidean space \mathbb{R}^n is a pair (S,Γ) where $\Gamma:\mathbb{R}^n \to End(S)$ is a linear map which satisfies

$$\Gamma(v)^* + \Gamma(v) = 0, \qquad \Gamma(v)^* \Gamma(v) = |v|^2 1$$

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email addresses:* ndegirmenci@anadolu.edu.tr (N. Değirmenci), skarapazar@anadolu.edu.tr (S. Karapazar)

Seiberg-Witten Like Monopole Equations on \mathbb{R}^5

for every $v \in \mathbb{R}^n$.

From the universal property of the complex Clifford algebra $\mathbb{C}l_n$ the map Γ can be extended to an algebra homomorphism $\Gamma : \mathbb{C}l_n \to \operatorname{End}(S)$ which satisfies $\Gamma(\tilde{x}) = \Gamma(x)^*$, where \tilde{x} is conjugate of x in $\mathbb{C}l_n$ and $\Gamma(x)^*$ denotes the Hermitian conjugate of $\Gamma(x)$. Let e_1, e_2, \dots, e_n be the standard basis of \mathbb{R}^n and e^1, e^2, \dots, e^n be its dual. If (S, Γ) is a spin^{*c*} structure on \mathbb{R}^n , then we can define an action of the space of 2–forms $\Lambda^2(\mathbb{R}^n)$ on S as follows: Firstly identify $\Lambda^2(\mathbb{R}^n)$ with the spaces of second order elements of Clifford algebra $C_2(\mathbb{R}^n)$ via the map

$$\Lambda^2(\mathbb{R}^n) \quad \to \quad C_2(\mathbb{R}^n), \\ \eta = \sum_{i < j} \eta_{ij} e^i \wedge e^j \quad \mapsto \quad \sum_{i < j} \eta_{ij} e_i e_j.$$

If we compose this map with Γ , then we obtain a map $\rho: \Lambda^2(\mathbb{R}^n) \to \text{End}(S)$ by

$$\rho(\sum_{i< j}\eta_{ij}e^i\wedge e^j)=\sum_{i< j}\eta_{ij}\Gamma(e_i)\Gamma(e_j).$$

The map ρ extends to a map

$$\rho: \Lambda^2(\mathbb{R}^n) \otimes \mathbb{C} \to \operatorname{End}(S)$$

on the space of complex valued 2–forms. By using an i \mathbb{R} -valued 1–form $A \in \Omega^1(\mathbb{R}^n, i\mathbb{R})$ and the Levi-Civita connection ∇ on \mathbb{R}^n we can obtain a connection ∇^A on S, which is called spinor covariant derivative operator and it satisfies

$$\nabla_V^A(\Gamma(W)\Psi) = \Gamma(W)\nabla_V^A\Psi + \Gamma(\nabla_V W)\Psi,$$

where Ψ is spinor, a section of S, V and W are vector fields on \mathbb{R}^n . At this point we can define Dirac operator $D_A: C^{\infty}(\mathbb{R}^n, S) \to C^{\infty}(\mathbb{R}^n, S)$ by

$$D_A(\Psi) = \sum_{i=1}^n \Gamma(e_i) \nabla^A_{e_i}(\Psi).$$

2.2 Seiberg-Witten equations on \mathbb{R}^4

The following form of Seiberg-Witten equations can be found in [8,9]. The *spin^c* connection $\nabla = \nabla^A$ on \mathbb{R}^4 is given by

$$\nabla_j \Psi = \frac{\partial \Psi}{\partial x_j} + A_j \Psi,$$

where $A_j: \mathbb{R}^4 \longrightarrow i\mathbb{R}$ and $\Psi: \mathbb{R}^4 \longrightarrow \mathbb{C}^2$. Then the associated connection on the line bundle $L_{\Gamma} = \mathbb{R}^4 \times \mathbb{C}$ is the connection 1–form

$$A = \sum_{i=1}^{4} A_i \mathrm{d} x_i \in \Omega^1 \left(\mathbb{R}^4, i \mathbb{R} \right),$$