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Abstract. Asymptotic large- and short-time behavior of solutions of the linear disper-
sion equation ut = uxxx in R×R+, and its (2k+1)th-order extensions are studied.
Such a refined scattering is based on a “Hermitian” spectral theory for a pair {B,B∗}
of non self-adjoint rescaled operators
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with the discrete spectrum σ(B)=σ(B∗)={λl=−l/3, l=0,1,2,···} and eigenfunctions

for B, {ψl(y)=[(−1)l/
√

l!]Dl
yAi(y),l≥0}, where Ai(y) is Airy’s classic function. Eigen-

functions of B∗ are then generalized Hermite polynomials. Applications to very singular
similarity solutions (VSSs) of the semilinear dispersion equation with absorption,
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: ut =uxxx−|u|p−1u in R×R+, p>1,

and to its higher-order counterparts are presented. The goal is, by using various
techniques, to show that there exists a countable sequence of critical exponents {pl =
1+3/(l+1), l=0,1,2,···} such that, at each p= pl, a p-branch of VSSs bifurcates from
the corresponding eigenfunction ψl of the linear operator B above.

AMS Subject Classifications: 35K55, 35K40

Chinese Library Classifications: O175.26, O175.29

Key Words: Odd-order linear and semilinear PDEs; fundamental solution; Hermitian spectral
theory; polynomial eigenfunctions; self-similarity; very singular solutions; bifurcations; branch-
ing.

∗Corresponding author. Email addresses: vag@maths.bath.ac.uk (V. A. Galaktionov), rsf21@maths.bath.
ac.uk (R. S. Fernandes)

http://www.global-sci.org/jpde/ 207



208 R. S. Fernandes and V. A. Galaktionov / J. Partial Diff. Eq., 24 (2011), pp. 207-263

1 Introduction: semilinear odd-order models, history,

and results

1.1 Basic dispersion models and applications

As a first basic model, we will study higher odd-order partial differential equations
(PDEs) of the form

ut=(−1)k+1D2k+1
x u+ g̃(u) in R×R+, k=1,2,··· , (1.1)

with bounded integrable initial data u(x,0) = u0(x) in R. Here Dm
x = (∂/∂x)m denotes

the mth partial derivative in x. The odd-order semilinear dispersion equation (1.1) can be
considered as a counterpart of the better known semilinear higher-even-order parabolic
PDE of reaction-diffusion type,

ut=(−1)k+1D2k
x u+ g̃(u) in R×R+, k=1,2,··· . (1.2)

For k=1, (1.2) becomes a standard reaction-diffusion equation from combustion theory

ut=uxx+ g̃(u) in R×R+, (1.3)

to which dozens of well-known monographs are devoted to. These parabolic equations
indeed belong to an entirely different type of PDEs and were much better studied in the
twentieth century. However, the analogy between odd and even-order PDEs, such as
(1.1) and (1.2), is rather fruitful and will be used later on.

The function (a nonlinear operator) g̃(u) in (1.2) usually corresponds to absorption-
reaction type phenomena and sometimes is assumed to include differential terms, such
as Dm

x u, with m< 2k+1 (although we do not consider such cases). It is worth mention-
ing again that, besides some special and completely integrable PDEs, general odd-order
models such as (1.1) are less studied in the mathematical literature, than the parabolic
even-order ones (1.2).

Indeed, the most classical example of such an odd-order equation is the KdV equation:

ut=uxxx+uux (g̃(u) :=uux), (1.4)

which was introduced by Boussinesq in 1872 together with its soliton solution [1]. The
KdV equation models long waves in shallow water and generates a hierarchy of other
more complicated PDEs with linear and nonlinear dispersion (dispersive) mechanisms.
See further amazing historical aspects concerning (1.4) and related integrable PDEs in [2,
p. 226-229].

Concerning higher-order extensions, these naturally appear in classic theory of inte-
grable PDEs from shallow water applications, including the fifth-order KdV equation,

ut+uxxxxx+30u2ux+20uxuxx+10uuxxx =0.


