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Abstract. The fractional derivatives in the sense of Caputo, and the homotopy pertur-
bation method are used to construct the approximate solutions for nonlinear variant
Boussinesq equations with respect to time fractional derivative. This method is ef-
ficient and powerful in solving wide classes of nonlinear evolution fractional order
equations.
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1 Introduction

Fractional differential equations have caught much attention recently due to the exact
description of nonlinear phenomena. First there were almost no practical applications
of fractional calculus, and it was considered by many authors as an abstract area con-
taining only mathematical manipulations of little or no use. Nearly 30 years ago, the
paradigm began to shift from pure mathematical formulations to applications in vari-
ous fields. During the last decade Fractional Calculus has been applied to almost every
field of science, engineering, and mathematics. Several fields of application of fractional
differentiation and fractional integration are already well established, some others have
just started. Many applications of fractional calculus can be found in turbulence and
fluid dynamics, stochastic dynamic system, plasma physics and controlled thermonu-
clear fusion, nonlinear control theory, image processing, nonlinear biological systems,
astrophysics [1–11]. Historical summaries of the developments of fractional calculus can
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be found in [1–3]. There has been some attempt to solve linear problems with multiple
fractional derivatives (the so-called multi-term equations) [2, 12]. Not much work has
been done for nonlinear problems and only a few numerical schemes have been pro-
posed to solve nonlinear fractional differential equations. More recently, applications
have included classes of nonlinear equation with multi-order fractional derivative and
this motivates us to develop a numerical scheme for their solutions [13]. Most of frac-
tional differential equations do not have exact analytical solutions, hence considerable
heed has been focused on the approximate and numerical solutions such as Adomian
decomposition method [14–17], variational iteration method [18, 19], homotopy pertur-
bation method [20–22], homotopy Analysis method [23, 24] and so on.

Consider the nonlinear variant Boussinesq equations [25]
{

ht+(hu)x+uxxx=0,

ut+hx+uux=0.
(1.1)

Lu [25] used the Jacobi elliptic functions to obtain the exact solutions for two variant
Boussinesq equations (1.1). Zayed et al. [26] have used the homotopy perturbation method
and Adomian decomposition method to introduce the approximate solutions for nonlin-
ear variant Boussinesq equations (1.1).

In this article, we give a new model of the time fraction variant Boussinesq equations
of the form

{

Dα
t h+(hu)x+uxxx=0,

Dα
t u+hx+uux=0, 0<α≤1,

(1.2)

where Dα
t =∂α/∂tα.

This system has been discussed by many authors when α→1. We use homotopy per-
turbation method to calculate an approximate solution of time fraction variant Boussi-
nesq equations (1.2) which is a generalization of the given solution in [25, 26].

2 Preliminaries and notations

In this section, we give some basic definitions and properties of the fractional calculus
theory which will be used further in this paper. For more details see [2]. For the finite
interval [a,b], we define the following fractional integral and derivatives.

Definition 2.1. A real function f (x), x>0, is said to be in the space Cµ, µ∈R, if there exists a
real number (p>µ), such that f (x)= xp f1(x), where f1(x)∈C(0,∞), and it is said to be in the
space Cm

µ if f m ∈Cµ, m∈N.

Definition 2.2. The Riemann- Liouville fractional integral operator of order α≥0, of a function
f ∈Cµ, µ≥−1, is defined as

Jα f (x)=
1

Γ(α)

x
∫

0

(u−t)α−1 f (t) dt, α>0, x>0, J0 f (x)= f (x). (2.1)


