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Abstract. we prove the local existence and uniqueness of a moving boundary prob-
lem modeling chemotactic phenomena. We also get the explicit representative for the
moving boundary in a special case.
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1 Introduction

In this paper, we are interested in a moving boundary problem due to a chemotaxis model
which was introduced by Keller and Segel [1]. The model reads as follows





ut=∆u−χ∇(u∇v), x∈Ω, t>0,

vt =γ∆v−µv+βu, x∈Ω, t>0,

u(x,0)=u0, v(x,0)=v0, u0,v0≥0, x∈Ω,
∂u

∂n
=

∂v

∂n
=0, x∈∂Ω, t>0,

(1.1)

where u(x,t) and v(x,t) stand respectively for the density of the considered species and
that of the chemical which triggers the movement, constants χ,γ,µ and β are positive
parameters, Ω is a bounded open subset in RN(N ≥ 1) with smooth boundary ∂Ω, and
n is unit outer normal vector of ∂Ω. The problem (1.1) is intensively studied by many
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authors and most results have been devoted to the investigation of some limit cases cor-
responding to particular choices of the parameters χ,γ,µ and β above. One of them is that
the diffusive velocity of γ tends to infinity, which leads to the following system (see [2])





ut=∆u−χ∇(u∇v), x∈Ω, t>0,

0=∆v+(u−1), x∈Ω, t>0,
∂u

∂n
=

∂v

∂n
=0, x∈∂Ω, t>0,

u(x,0)=u0, u0≥0, x∈Ω,

(1.2)

where
∫

Ω
u0dx= |Ω|,|Ω| represents the volume of Ω.

For the problem (1.2), many results have been gained by some authors (see for in-
stance [2–6]). Since the spatial diffusive velocity of v is much faster than that of u, it
makes sense that the spatial domain occupied by u is a subset of the spatial domain oc-
cupied by v at the same time. In other words, let Ω⊂RN be a bounded open domain and
Ω0 ⊂⊂Ω be an open sub-domain. Assume a population density u(x,0) occupying the
domain Ω0, and in the outside of Ω0 the population density u(x,0)≡ 0 and the external
signal v occupying Ω. For t > 0, u(x,t) spreads to domain Ωt ⊂ Ω, let ∂Ωt denote the
boundary of Ωt and nt denote the outer normal vector of ∂Ωt, then Γt=∂Ωt×(0,T) is the
moving boundary.

The spatial diffusion of species is referred to the moving boundary of Ωt which is
occupied by the specie at the time t≥0. Observe the flux is increasing with respect to the
density of the species, so it would be reasonable to suppose that flux is proportional to
the density. Thus we have following flux condition on ∂Ωt,

−∇u·nt= k(x,t)u, on ∂Ωt, (1.3)

where k(x,t) is a positive function, and 1/k(x,t)>0 is mass flow ratio.
On the other hand, noticing that the full flux on ∂Ωt is

j=−∇u·nt+χu∇v·nt. (1.4)

By conservation of population, one has

uvnt =−∇u·nt+χu∇v·nt, on ∂Ωt, (1.5)

where vnt is the normal diffusion velocity of ∂Ωt.
Assume Γt : Φ(x,t)=0, then

vnt =

(
dx1

dt
,
dx2

dt
,···,

dxn

dt

)
·nt=

(
dx1

dt
,
dx2

dt
,···,

dxn

dt

)
·
∇Φ

|∇Φ|
, (1.6)

where x=(x1,x2,···,xn) and ∇=( ∂
∂x1

, ∂
∂x2

,···, ∂
∂xn

).


