doi: 10.4208/jpde.v28.n1.1 March 2015

An Existence Result for a Class of Chemically Reacting Systems with Sign-Changing Weights

RASOULI S. H.* and NOROUZI H.

Department of Mathematics, Faculty of Basic Sciences, Babol University of Technology, Babol, Iran.

Received 12 May 2014; Accepted 29 October 2014

Abstract. We prove the existence of positive solutions for the system

$\int -\Delta_p u = \lambda a(x) f(v) u^{-\alpha},$	$x \in \Omega$,
$\int -\Delta_q v = \lambda b(x) g(u) v^{-\beta},$	$x \in \Omega$,
u=v=0,	$x \in \partial \Omega$

where $\Delta_r z = \operatorname{div}(|\nabla z|^{r-2}\nabla z)$, for r > 1 denotes the r-Laplacian operator and λ is a positive parameter, Ω is a bounded domain in \mathbb{R}^n , $n \ge 1$ with sufficiently smooth boundary and $\alpha, \beta \in (0,1)$. Here a(x) and b(x) are C^1 sign-changing functions that maybe negative near the boundary and f,g are C^1 nondecreasing functions, such that $f,g: [0,\infty) \to [0,\infty)$; f(s) > 0, g(s) > 0 for s > 0, $\lim_{s\to\infty} g(s) = \infty$ and

$$\lim_{s\to\infty}\frac{f(Mg(s)^{\frac{1}{q-1}})}{s^{p-1+\alpha}}=0,\qquad\forall M>0.$$

We discuss the existence of positive weak solutions when f, g, a(x) and b(x) satisfy certain additional conditions. We employ the method of sub-supersolution to obtain our results.

AMS Subject Classifications: 35J55, 35J65 Chinese Library Classifications: O175.25, O175.8 Key Words: Positive solutions; chemically reacting systems; sub-supersolutions.

1 Introduction

In this paper, we consider the existence of positive weak solutions for the nonlinear singular system

$$\begin{cases} -\Delta_p u = \lambda a(x) \frac{f(v)}{u^{\alpha}}, & x \in \Omega, \\ -\Delta_q v = \lambda b(x) \frac{g(u)}{v^{\beta}}, & x \in \Omega, \\ u = v = 0, & x \in \partial\Omega, \end{cases}$$
(1.1)

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email addresses:* s.h.rasouli@nit.ac.ir (S. H. Rasouli)

where $\Delta_r z = \operatorname{div}(|\nabla z|^{r-2}\nabla z)$, for r > 1 denotes the r-Laplacian operator and Ω is a bounded domain in \mathbb{R}^n , $n \ge 1$ with smooth boundary, $\alpha, \beta \in (0,1)$. Here a(x) and b(x) are C^1 sing-changing functions that maybe negative near the boundary and f,g are C^1 nondecreasing functions such that $f,g:[0,\infty) \to [0,\infty)$; f(s) > 0, g(s) > 0 for s > 0.

Systems of singular equations like (1.1) are the stationary counterpart of general evolutionary problems of the form

$$\begin{cases} u_t = \eta \Delta_p u + \lambda \frac{f(v)}{u^{\alpha}}, & x \in \Omega, \\ v_t = \delta \Delta_q v + \lambda \frac{g(u)}{v^{\beta}}, & x \in \Omega, \\ u = v = 0, & x \in \partial \Omega \end{cases}$$

where η and δ are positive parameters. This system is motivated by an interesting applications in chemically reacting systems, where *u* represents the density of an activator chemical substance and *v* is an inhibitor. The slow diffusion of *u* and the fast diffusion of *v* is translated into the fact that η is small and δ is large (see [1]).

Recently, such problems have been studied in [2–4]. Also in [2], the authors have studied the existence results for the system (1.1) in the case $a \equiv 1$, $b \equiv 1$. Here we focus on further extending the study in [2] to the system (1.1). In fact, we study the existence of positive solution to the system (1) with sign-changing weight functions a(x),b(x). Due to these weight functions, the extensions are challenging and nontrivial. Our approach is based on the method of sub-super solutions (see [5–7]).

To precisely state our existence result we consider the eigenvalue problem

$$\begin{cases} -\Delta_r \phi = \lambda |\phi|^{r-2} \phi, & x \in \Omega, \\ \phi = 0, & x \in \partial \Omega. \end{cases}$$
(1.2)

Let $\phi_{1,r}$ be the eigenfunction corresponding to the first eigenvalue $\lambda_{1,r}$ of (1.2) such that $\phi_{1,r}(x) > 0$ in Ω , and $\|\phi_{1,r}\|_{\infty} = 1$ for r = p,q. Let $m,\sigma,\delta > 0$ be such that

$$\sigma \le \phi_{1,r} \le 1, \quad x \in \Omega - \overline{\Omega_{\delta}}, \tag{1.3}$$

$$\lambda_{1,r}\phi_{1,r}^{r} - \left(1 - \frac{sr}{r - 1 + s}\right) |\nabla\phi_{1,r}|^{r} \le -m, \quad x \in \overline{\Omega_{\delta}}, \tag{1.4}$$

for r=p,q, and $s=\alpha,\beta$, where $\overline{\Omega_{\delta}}:=\{x\in\Omega|d(x,\partial\Omega)\leq\delta\}$. (This is possible since $|\nabla\phi_{1,r}|^r\neq 0$ on $\partial\Omega$ while $\phi_{1,r}=0$ on $\partial\Omega$ for r=p,q. We will also consider the unique solution $\zeta_r\in W_0^{1,r}(\Omega)$ of the boundary value problem

$$\begin{cases} -\Delta_r \zeta_r = 1, & x \in \Omega, \\ \zeta_r = 0, & x \in \partial \Omega \end{cases}$$

to discuss our existence result, it is known that $\zeta_r > 0$ in Ω and $\partial \zeta_r / \partial n < 0$ on $\partial \Omega$.