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Abstract. In this paper, we consider the 3D Hall-MHD system, and provide an im-
proved Liouville type result for its stationary version.
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1 Introduction

This paper concerns itself with the three-dimensional (3D) Hall-magnetohydrodynamics
system (Hall-MHD):















ut+(u·∇)u+∇π=(∇×B)×B+△u,
∇·u=0,
Bt−∇×(u×B)+∇×[(∇×B)×B]=△B,

in R
3×(0,∞),

u(0)=u0, B(0)=B0, in R
3,

(1.1)

where u is fluid velocity field, B is the magnetic field, and π is a scalar pressure. We
prescribe the initial data to satisfy the condition

∇·u0=∇·B0=0. (1.2)

The first systematic study of the Hall-MHD system is pioneered by Lighthill [1] fol-
lowed by Campos [2]. Comparing with the usual MHD equations, the Hall-MHD system
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has the Hall term ∇×[(∇×B)×B] in (1.1)3, which may become significant for such prob-
lems as magnetic reconnection in geo-dynamo [3], star formation [4, 5], neutron stars [6]
and space plasmas [7, 8].

Mathematically, the Hall-MHD system can be derived from either two-fluids or ki-
netic models (see [3]), and the global existence of weak solutions, local existence and
uniqueness of smooth solutions, blow-up criteria and small data global existence of clas-
sical solutions were established in [9, 10]. For the fractional Hall-MHD, the reader is
referred to [11].

The stationary version of (1.1) is






(u·∇)u+∇π=(∇×B)×B+△u,
∇·u=0,
−∇×(u×B)+∇×[(∇×B)×B]=△B.

(1.3)

And in [9], the authors established the following Liouville type theorem.

Theorem 1.1. ([9]) Let u,B be C2(R3) solutions to (1.3) satisfying

u,B∈L∞(R3)∩L
9
2 (R3); ∇u,∇B∈L2(R3).

Then we have u=B=0.

It is not natural to assume that the boundedness of the solution u,B (see [12,13]), and
the aim of this paper is to improving Theorem 1.1 as

Theorem 1.2. Let u,B be C2(R3) solutions to (1.3) satisfying

u,B∈L
9
2 (R3); ∇u,∇B∈L2(R3).

Then we have u=B=0.

2 Proof of Theorem 1.2

In this section, we shall prove Theorem 1.2.
We first derive an estimate of the pressure. Taking the divergence of (1.3)1, and using

the vector identity

(∇×B)×B=−∇
|B|2

2
+(B·∇)B,

we obtain

−△π=
3

∑
i,j=1

∂i∂j(uiuj−BiBj)+△
|B|2

2
.

Classical elliptic regularity results then yields

‖π‖Lq ≤C‖(u,B)‖2
L2q , 1<q<∞. (2.1)


