Regularity of Viscous Solutions for a Degenerate Non-linear Cauchy Problem

HERNÁNDEZ-SASTOQUE Eric¹, KLINGENBERG Christian², RENDÓN Leonardo³ and JUAJIBIOY Juan C.^{4,*}

¹Departamento de Matemáticas, Universidad de Magdalena, Santa Marta, Colombia. ²Department of Mathematics, Würzburg University, Germany.

³Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá.

⁴Departamento de Ciencias Naturales Y Exáctas, Fundación Universidad Autonoma de Colombia, Bogotá.

Received 4 August 2015; Accepted 9 March 2016

Abstract. We consider the Cauchy problem for a class of nonlinear degenerate parabolic equation with forcing. By using the vanishing viscosity method it is possible to construct a generalized solution. Moreover, this solution is a Lipschitz function on the spatial variable and Hölder continuous with exponent 1/2 on the temporal variable.

AMS Subject Classifications: 35K65, 35D10

Chinese Library Classifications: O175.26

Key Words: Viscosity solution; Hölder estimates; Hölder continuity.

1 Introduction

In this paper we consider the Cauchy problem for nonlinear degenerate parabolic equation

$$u_t = u\Delta u - \gamma |\nabla u|^2 + f(t, u), \qquad (x, t) \in \mathbb{R}^N \times \mathbb{R}_+, \tag{1.1}$$

$$u(x,0) = u_0(x) \in C(\mathbb{R}^N) \cap L^{\infty}(\mathbb{R}^N), \qquad (1.2)$$

where γ is a nonnegative constant. Eq. (1.1) arises in severals applications of biology and physics, see [1,2]. Eq. (1.1) is of degenerate parabolic type: parabolicity it is loss at

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email addresses:* eric.hernandez@unimagdalena.edu.co (E. H. Sastoque), klingenberg@mathematik.uni-wuerzburg.de (C. Klingenberg), lrendona@unal.eu.co (L. Rendón), jcjuajibioyo-@unal.edu.co (J. C. Juajibioy)

points where u = 0, see [1,3] for a most detailed description. In [4] a weak solution for the homogeneous equation (1.1) is constructed by using the vanishing viscosity method [5], the regularity of the weak solutions for the homogeneous Cauchy problem (1.1)-(1.2) was studied by the author in [6] and an extension for the inhomogeneous case is given in [7]. In this paper we extend the above results for the inhomogeneous case, this extension is interesting from physical viewpoint, since the Eq. (1.1) is related with non-equilibrium process in porous media due to external forces. We obtain the following main theorem,

Theorem 1.1. If $\gamma \ge \sqrt{2N-1}$, $|\nabla(u_0^{1+\frac{\alpha}{2}})| \le M$, where *M* is a positive constant such as

$$\alpha^2 + (\gamma + 1)\alpha + \frac{N}{2} \le 0,$$

then the viscosity solutions of the Cauchy problem (1.1)-(1.2) satisfies

$$\nabla(u^{1+\frac{\alpha}{2}})| \le M. \tag{1.3}$$

We principally followed the ideas of the authors in [6,7], where the particular reaction therm Ku^m was considered.

2 Preliminaries

We begin this section with the definition of solutions in weak sense.

Definition 2.1. A function $u \in L^{\infty}(\Omega) \cap L^{2}_{loc}([0,+\infty); H^{1}_{Loc}(\mathbb{R}^{N}))$, is called a weak solution of (1.1)-(1.2) if it satisfies the following conditions:

- (i) $u(x,t) \ge 0$, a.e in Ω .
- (*ii*) u(x,t) satisfies the following relation

$$\int_{\mathbb{R}^N} u_0 \psi(x,0) dx + \iint_{\Omega} (u\psi_t - u\nabla u \cdot \nabla \psi - (1+\gamma) |\nabla u|^2 \psi - f(t,u)\psi) dx dt = 0, \quad (2.1)$$

for any
$$\psi \in C^{1,1}(\Omega)$$
 with compact support in Ω .

For the construction of a weak solution to the Cauchy problem (1.1)-(1.2), we use the viscosity method: we add the term $\epsilon \Delta u$ in the Eq. (1.1) and we consider the following Cauchy problem

$$u_t = u\Delta u - \gamma |\nabla u|^2 + f(t, u) + \epsilon \Delta u, \qquad u \in \Omega,$$
(2.2)

$$u(x,0) = u_0(x), \qquad x \in \mathbb{R}^N,$$
 (2.3)

where $\gamma \ge 0$. The existence of solutions for (2.2)-(2.3) follows by the Maximum principle and vanishing viscosity method ensures the convergence of the weak solutions when $\epsilon \rightarrow 0$ to the Cauchy problem (1.1)-(1.2).

Definition 2.2. *The weak solution for the Cauchy problem* (1.1)-(1.2) *constructed by the vanishing viscosity method is called viscosity solution.*