Semi-stability for Holomorphic Bundles with Global Sections

ZHANG Chuanjing*

School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China.

Received 10 July 2016; Accepted 23 August 2016

Abstract. In this paper, we establish a generalized Hitchin-Kobayashi correspondence between the τ -semi-stability and the existence of approximate τ -Hermitian-Einstein structure on holomorphic pair (E,ϕ) . As an application, we obtain the Bogomolov type inequality for τ -semi-stable holomorphic pair.

AMS Subject Classifications: 53C07; 53C55

Chinese Library Classifications: O189.3+3

Key Words: τ -semi-stable; approximate τ -Hermitian-Einstein structure; holomorphic pair.

1 Introduction

The Hitchin-Kobayashi correspondence states that a holomorphic vector bundle over a compact Kähler manifold is stable if and only if it is simple and admits an Hermitian-Einstein metric. This correspondence was first proved for compact Riemannian surfaces by Narasimhan-Seshadri [1], for algebraic manifolds by Donaldson [2], and for general Kähler manifolds by Uhlenbeck-Yau [3]. The classical Hitchin-Kobayashi correspondence has several interesting and important generalizations and extensions where some extra structures are added to the holomorphic bundles, for example: [4–8], etc.

In [9], Kobayashi introduced the notion of approximate Hermitian-Einstein structure on a holomorphic vector bundle, and he proved that a holomorphic vector bundle with an approximate Hermitian-Einstein structure must be semi-stable. Furthermore, over projective algebraic manifolds, Kobayashi solved the inverse problem, i.e. the semistability implies admitting an approximate Hermitian-Einstein structure. The general Kähler case was studied by Jacob ([10]). Recently, Li and Zhang ([6]) showed that the

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email address:* chjzhang@mail.ustc.edu.cn (C. J. Zhang)

semi-stability of Higgs bundles also implies the existence of approximate Hermitian-Einstein structure by using the heat flow method.

Let (M, ω) be a compact Kähler manifold. Given a coherent sheaf \mathcal{F} on M, the ω -slope $\mu(\mathcal{F})$ of \mathcal{F} is defined by

$$\mu(\mathcal{F}) = \frac{\deg_{\omega}(\mathcal{F})}{\operatorname{rank}\mathcal{F}} = \frac{1}{\operatorname{rank}\mathcal{F}} \int_{M} c_1(\det\mathcal{F}) \wedge \frac{\omega^{n-1}}{(n-1)!}.$$
(1.1)

where det \mathcal{F} is the determinant line bundle of \mathcal{F} . A holomorphic pair (E,ϕ) over M is a holomorphic bundle E coupled with ϕ a holomorphic global section of E. For a real number τ , a holomorphic pair (E,ϕ) is called τ -stable (τ -semi-stable) if it satisfies the following two conditions:

- (i) It holds $\mu(\mathcal{E}') < (\leq) \frac{\tau \operatorname{Vol}(M)}{4\pi}$ for all reflexive sub-sheaves $\mathcal{E}' \subset E$.
- (ii) $\frac{r\mu(E) r'\mu(\mathcal{E}')}{r r'} > (\geq) \frac{\tau \operatorname{Vol}(M)}{4\pi}$, for every reflexive sub-sheaf \mathcal{E}' with $0 < \operatorname{rank}(\mathcal{E}') = r' < \operatorname{rank}(E) = r$ such that $\phi \in \mathcal{E}'$ almost everywhere.

Bradlow ([11]) first investigated the following vortex equation

$$\sqrt{-1}\Lambda_{\omega}F_{H} + \frac{1}{2}\phi \otimes \phi^{*H} - \frac{1}{2}\cdot\tau \mathrm{Id} = 0, \qquad (1.2)$$

where *H* is an Hermitian metric on *E*, *F*_H is the curvature of the Chern connection with respect to *H*, Λ_{ω} denotes the contraction of differential forms by Kähler form ω , ϕ^{*H} is the adjoint of ϕ with respect to *H* and τ is a real parameter. An Hermitian metric satisfying (1.2) will be called a τ -Hermitian-Einstein metric. In [11], Bradlow established a correspondence between the τ -stability of holomorphic pair (*E*, ϕ) and the existence of τ -Hermitian-Einstein metric.

We say a holomorphic pair (E,ϕ) admits an approximate τ -Hermitian-Einstein structure if for every positive ϵ , there is an Hermitian metric H such that

$$\max_{M} \left| \sqrt{-1} \Lambda_{\omega} F_{H} + \frac{1}{2} \phi \otimes \phi^{*H} - \frac{1}{2} \tau \operatorname{Id} \right|_{H} < \epsilon.$$
(1.3)

In this paper, we establish a correspondence between the τ -semi-stability and the existence of approximate τ -Hermitian-Einstein structure on holomorphic pair (E,ϕ) , i.e. we prove the following theorem.

Theorem 1.1. Assume (E,ϕ) is a holomorphic pair on compact Kähler manifold (M,ω) , then (E,ϕ) is τ -semi-stable if and only if it admits an approximate τ -Hermitian-Einstein structure.

Let $c_1(E)$ and $ch_2(E)$ be the first Chern class and second Chern character of *E* respectively, and set

$$C_1(E) = \int_M c_1(E) \wedge \frac{\omega^{n-1}}{(n-1)!}, \quad Ch_2(E) = \int_M ch_2(E) \wedge \frac{\omega^{n-2}}{(n-2)!}.$$
 (1.4)