
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS
J. Part. Diff. Eq., Vol. 29, No. 4, pp. 320-359

doi: 10.4208/jpde.v29.n4.5
December 2016

On a Lagrangian Formulation of the Incompressible

Euler Equation

INCI Hasan∗

EPFL SB MATHAA PDE MA C1 637 (Bâtiment MA) Station 8 CH-1015 Lausanne,
Switzerland.

Received 2 April 2016; Accepted 22 October 2016

Abstract. In this paper we show that the incompressible Euler equation on the Sobolev
space Hs(Rn), s> n/2+1, can be expressed in Lagrangian coordinates as a geodesic
equation on an infinite dimensional manifold. Moreover the Christoffel map describ-
ing the geodesic equation is real analytic. The dynamics in Lagrangian coordinates
is described on the group of volume preserving diffeomorphisms, which is an ana-
lytic submanifold of the whole diffeomorphism group. Furthermore it is shown that a
Sobolev class vector field integrates to a curve on the diffeomorphism group.
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1 Introduction

The initial value problem for the incompressible Euler equation in Rn, n≥2, reads as:





∂tu+(u·∇)u=−∇p,

divu=0,

u(0)=u0,

(1.1)

where u(t,x)=
(
u1(t,x),. . .,un(t,x)

)
is the velocity of the fluid at time t∈R and position

x ∈ Rn, u·∇= ∑
n
k=1uk∂k acts componentwise on u, ∇p is the gradient of the pressure

p(t,x), divu=∑
n
k=1 ∂kuk is the divergence of u and u0 is the value of u at time t=0 (with

assumption divu0=0). The system (1.1) (going back to Euler [1]) describes a fluid motion
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without friction. The first equation in (1.1) reflects the conservation of momentum. The

second equation in (1.1) says that the fluid motion is incompressible, i.e. that the volume

of any fluid portion remains constant during the flow.

The unknowns in (1.1) are u and p. But as we will see later one can express ∇p in

terms of u. Thus the evolution of system (1.1) is completely described by u. Therefore we

will speak in the sequel of the solution u instead of the solution (u,p).
Consider now a fluid motion determined by u. If one fixes a fluid particle which at

time t=0 is located at x∈Rn and whose position at time t≥0 we denote by ϕ(t,x)∈Rn,

we get the following relation between u and ϕ

∂t ϕ(t,x)=u
(
t,ϕ(t,x)),

i.e. ϕ is the flow-map of the vectorfield u. The second equation in (1.1) translates to the

well-known relation det(dϕ)≡1, where dϕ is the Jacobian of ϕ – see Majda, Bertozzi [2].

In this way we get a description of system (1.1) in terms of ϕ. The description of (1.1) in

the ϕ-variable is called the Lagrangian description of (1.1), whereas the description in the

u-variable is called the Eulerian description of (1.1). One advantage of the Lagrangian

description of (1.1) is that it leads to an ODE formulation of (1.1). This was already used

in Lichtenstein [3] and Gunter [4] to get local well-posedness of (1.1).

To state the result of this paper we have to introduce some notation. For s∈R≥0 we

denote by Hs(Rn) the Hilbert space of real valued functions on Rn of Sobolev class s and

by Hs(Rn;Rn) the vector fields on Rn of Sobolev class s – see Adams [5] or Inci, Topalov,

Kappeler [6] for details on Sobolev spaces. We will often need the fact that for n ≥ 1,

s>n/2 and 0≤ s′≤ s multiplication

Hs(Rn)×Hs′(Rn)→Hs′(Rn), ( f ,g) 7→ f ·g, (1.2)

is a continuous bilinear map.

The notion of solution for (1.1) we are interested in are solutions which lie in C0
(
[0,T];

Hs(Rn;Rn)
)

for some T > 0 and s > n/2+1. This is the space of continuous curves on

[0,T] with values in Hs(Rn;Rn). To be precise we say that u,∇p∈C0
(
[0,T];Hs(Rn;Rn)

)

is a solution to (1.1) if

u(t)=u0+
∫ t

0
−(u(τ)·∇)u(τ)−∇p(τ)dτ, ∀0≤ t≤T, (1.3)

and divu(t) = 0 for all 0≤ t ≤ T holds. As s−1 > n/2 we know by the Banach algebra

property of Hs−1(Rn) that the integrand in (1.3) lies in C0
(
[0,T];Hs−1(Rn;Rn)

)
. Due to

the Sobolev imbedding and the fact s> n/2+1 the solutions considered here are C1 (in

the x-variable slightly better than C1) and are thus solutions for which the derivatives

appearing in (1.1) are classical derivatives.

The discussion above shows that in this paper the state-space of (1.1) in the Eule-

rian description is Hs(Rn;Rn), s > n/2+1. By the divergence-free condition for u one


