Existence and Nonexistence for Semilinear Equations on Exterior Domains

IAIA Joseph A.*

University of North Texas, P.O. Box 311430, Denton, Texas 76203-5017, USA.

Received 5 January 2016; Accepted 20 August 2017

Abstract. In this paper we prove the existence of an infinite number of radial solutions of $\Delta u + K(r)f(u) = 0$ on the exterior of the ball of radius $R > 0$ centered at the origin in \mathbb{R}^N where f is odd with $f < 0$ on $(0, \beta)$, $f > 0$ on (β, δ), $f \equiv 0$ for $u > \delta$, and where the function $K(r)$ is assumed to be positive and $K(r) \to 0$ as $r \to \infty$. The primitive $F(u) = \int_0^u f(s) \, ds$ has a “hilltop” at $u = \delta$ which allows one to use the shooting method to prove the existence of solutions.

AMS Subject Classifications: 34B40, 35B05

Chinese Library Classifications: O175.8, O175.25

Key Words: Semilinear; hilltop.

1 Introduction

In this paper we study radial solutions of:

\begin{align*}
\Delta u + K(r)f(u) &= 0 & \text{in } \Omega, \\
 u &= 0 & \text{on } \partial \Omega, \\
 u &\to 0 & \text{as } |x| \to \infty,
\end{align*}

where $x \in \Omega = \mathbb{R}^N \setminus B_R(0)$ is the complement of the ball of radius $R > 0$ centered at the origin. We assume there exist β, δ with $0 < \beta < \delta$ such that $f(0) = f(\beta) = f(\delta) = 0$, and $F(u) = \int_0^u f(s) \, ds$ where:

\begin{itemize}
 \item f is odd and locally Lipschitz, $f < 0$ on $(0, \beta)$, $f > 0$ on (β, δ), $f \equiv 0$ on (δ, ∞), and $F(\delta) > 0$.
\end{itemize}

*Corresponding author. Email address: iaia@unt.edu (Joseph A. Iaia)
In addition we assume:

\[f'(\beta) > 0 \quad \text{if } N > 2. \]

We note it follows that \(F(u) = \int_0^u f(s) \, ds \) is even (since \(f \) is odd) and has a unique positive zero, \(\gamma \), (since \(f < 0 \) on \((0, \beta) \), \(f > 0 \) on \((\beta, \delta) \), and \(F(\delta) > 0 \) with \(\beta < \gamma < \delta \) such that:

\[F < 0 \text{ on } (0, \gamma), F > 0 \text{ on } (\gamma, \infty), \text{ and } F \text{ is strictly monotone on } (0, \beta) \text{ and on } (\beta, \delta). \]

(1.6)

In earlier papers [1, 2] we studied (1.1), (1.3) when \(\Omega = \mathbb{R}^N \) and \(K(r) \equiv 1 \). In [3] we studied (1.1) and (1.3) with \(K(r) \equiv 1 \) and \(\Omega = \mathbb{R}^N \setminus B_R(0) \). We proved existence of an infinite number of solutions - one with exactly \(n \) zeros for each nonnegative integer \(n \) such that \(u \to 0 \) as \(|x| \to \infty \). Interest in the topic for this paper comes from recent papers [4–6] about solutions of differential equations on exterior domains.

When \(f \) grows superlinearly at infinity i.e. \(\lim_{u \to \infty} f(u)/u = \infty \), and \(\Omega = \mathbb{R}^N \) then the problem \((1.1), (1.3)\) has been extensively studied [7–11]. The type of nonlinearity addressed here has not been studied as extensively [1, 3].

Since we are interested in radial solutions of \((1.1)-(1.3)\) we assume that \(u(x) = u(|x|) = u(r) \) where \(x \in \mathbb{R}^N \) and \(r = |x| = \sqrt{x_1^2 + \cdots + x_N^2} \) so that by the chain rule \(u \) solves:

\[
u''(r) + \frac{N-1}{r} u'(r) + K(r)f(u(r)) = 0 \quad \text{on } (R, \infty), \quad \text{where } R > 0.
\]

We now let \(b > 0 \) and we proceed to examine solutions of:

\[
u''(r) + \frac{N-1}{r} u'(r) + K(r)f(u(r)) = 0 \quad \text{on } (R, \infty), \quad \text{where } R > 0, \quad (1.7)
\]

\[
u(R) = 0, \quad u'(R) = b > 0. \quad (1.8)
\]

We will show that for appropriate values of \(b \) we also have \(\lim_{r \to \infty} u(r, b) = 0 \).

We will occasionally denote the solution of the above by \(u(r, b) \) in order to emphasize the dependence on the initial parameter \(b \). Also throughout this paper differentiation will always be with respect to the variable \(r \).

We will assume that: there exist constants \(c_1 > 0, c_2 > 0, \) and \(\alpha > 0 \) such that:

\[c_1 r^{-\alpha} \leq K(r) \leq c_2 r^{-\alpha} \quad \text{for } 0 < \alpha < 2(N-1) \quad \text{on } [R, \infty). \]

(1.9)

In addition, we assume: \(K \) is differentiable and \(\exists \) constants \(d > 0, D > 0 \) s. t.

\[0 < d \leq \frac{rK'}{K} + 2(N-1) \leq D \quad \text{on } [R, \infty). \]

(1.10)

Note that \((1.10)\) implies \(r^{2(N-1)} K(r) \) is non-decreasing since:

\[(r^{2(N-1)} K(r))' = r^{2N-3} K \left(2(N-1) + \frac{rK'}{K} \right) > 0. \]