Optimal Regularity and Control of the Support for the Pullback Equation

KNEUSS O.*

Department of Mathematics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil.

Received 28 December 2016; Accepted 2 August 2017

Abstract. Given f,g two $C^{r,\alpha}$ either symplectic forms or volume forms on a bounded open set $\Omega \subset \mathbb{R}^n$ with $0 < \alpha < 1$ and $r \ge 0$, we give natural conditions for the existence of a map $\varphi \in \text{Diff}^{r+1,\alpha}(\Omega;\Omega)$ satisfying

 $\varphi^*(g) = f \text{ in } \Omega$ and $\operatorname{supp}(\varphi - \operatorname{id}) \subset \Omega$.

AMS Subject Classifications: 35F60, 58A10

Chinese Library Classifications: O175.8, O175.29

Key Words: Symplectic forms; volume forms; optimal regularity.

1 Introduction

The pullback equation $\varphi^*(g) = f$ where g and f are both symplectic forms or both volume forms has been studied a lot. One could consult [1] for an extensive survey for the pullback equation in general. We start by giving a very brief summary for the symplectic case: Darboux [2] proved that any two symplectic forms can be pulled back locally one to another. This result has been reproved by Moser [3] using an elegant flow method. These two proofs do not produce any gain in regularity: the map φ is at most as regular as the data g and f. Later Bandyopadhyay-Dacorogna [4] established in particular a local existence result with optimal regularity in the Hölder spaces $C^{r,\alpha}$, $0 < \alpha < 1$. Since the pullback equation is a system of first order PDE's, optimality means here that for $g, f \in C^{r,\alpha}$ there exists a solution $\varphi \in C^{r+1,\alpha}$.

For the global case coupled with a Dirichlet condition,

 $\varphi^*(g) = f \text{ in } \Omega \quad \text{and} \quad \varphi = \text{id on } \partial\Omega,$ (1.1)

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email address:* olivier.kneuss@gmail.com (O. Kneuss)

the following (quasi) optimal result has been proved in [5] (see also [4] for a slightly weaker result): given $\omega \in C^{r,\alpha}([0,1] \times \overline{\Omega}; \Lambda^2)$ an homotopy of symplectic forms between g and f such that, for every $t \in [0,1]$,

$$\omega_t - \omega_0$$
 is exact in Ω and $\omega_t \wedge \nu = \omega_0 \wedge \nu \in C^{r+1,\alpha}(\partial \Omega; \Lambda^3)$,

then there exists $\varphi \in \text{Diff}^{r+1,\alpha}(\overline{\Omega};\overline{\Omega})$ solving (1.1), where ν denotes the outward unit normal of some smooth bounded open set Ω and is identified with a 1–form. Note that, for a solution to (1.1) to exist, we necessarily have

$$g \wedge v = f \wedge v$$
 on $\partial \Omega$.

Note also that the only non natural condition (whose necessity is still an open problem) is the extra regularity of $\omega_t \wedge \nu$ on the boundary.

Concerning the case of volume forms (in which case, identifying volume forms with functions, $\varphi^*(g) = f$ reads as the single equation $g(\varphi) \det \nabla \varphi = f$) the first existence result (with no gain in regularity) for (1.1) is due to Moser [3]. Afterwards Dacorogna and Moser proved in [6] that given any $g, f \in C^{r,\alpha}(\overline{\Omega})$ strictly positive where Ω is a smooth connected bounded open set with

$$\int_{\Omega} g = \int_{\Omega} f, \qquad (1.2)$$

there exists $\varphi \in \text{Diff}^{r+1,\alpha}(\overline{\Omega};\overline{\Omega})$ satisfying (1.1). Note that (1.2) is obviously necessary to solve (1.1). Other proofs of this optimal regularity result have been established in [7–9].

In this paper we give conditions to solve the pullback equation $\varphi^*(g) = f$ in Ω with optimal regularity in Hölder space and imposing that $\varphi = id$ near the boundary (and not only on $\partial\Omega$ as in (1.1)). An obvious necessary condition for this problem is then

$$\operatorname{supp}(g-f) \subset \Omega. \tag{1.3}$$

We prove (cf. Theorems 3.1 and 3.2) that the above condition is to some extent also sufficient:

Theorem 1.1. (*i*) given Ω a bounded open set in \mathbb{R}^n star-shaped with respect with some open ball and ω a continuous homotopy of $C^{r,\alpha}(\Omega; \Lambda^2)$ symplectic forms between g and f such that

$$\operatorname{supp}(\omega_t - f) \subset \Omega$$
 for every $t \in [0,1]$,

there exists $\varphi \in \operatorname{Diff}^{r+1,\alpha}(\Omega;\Omega)$ verifying

$$\varphi^*(g) = f \text{ in } \Omega \quad and \quad \operatorname{supp}(\varphi - \operatorname{id}) \subset \Omega.$$
 (1.4)

(ii) given g, f two non vanishing $C^{r,\alpha}(\Omega)$ functions in some bounded connected open set Ω verifying (1.2) and (1.3), there exists $\varphi \in \text{Diff}^{r+1,\alpha}(\Omega;\Omega)$ verifying (1.4).