doi: 10.4208/jpde.v31.n4.4 December 2018

Fractional Tikhonov Regularization Method for a Time-Fractional Backward Heat Equation with a Fractional Laplacian

WANG Jianlin, XIONG Xiangtuan* and CAO Xiaoxiao

Department of Mathematics, Northwest Normal University, Lanzhou 730070, China. Received 20 March 2018; Accepted 27 September 2018

Abstract. In this paper, we consider a time-fractional backward problem with a fractional Laplacian. We propose a fractional Tikhonov regularization method for solving this problem under the the a-priori parameter choice rule. Error estimates are proved. Some numerical examples are shown to verify the effectiveness of the proposed method.

AMS Subject Classifications: 65R35

Chinese Library Classifications: O24

Key Words: Inverse problem; Ill-posedness; error estimate; fractional regularization method.

1 Introduction

The backward heat conduction problem (BHCP) has been studied by many researchers [1,2]. Also there are many mathematical results about fractional backward heat condition problem (FBHCP) in the domain \mathcal{R}^d . Deng and Yang [3] considered a discretized Tikhonov regularization method for solving it, Li and Xiong [4] gave a general regularization method for the FBHCP with application to a deblurring problem. However there are few mathematical results about a time-fractional backward heat equation with fractional Laplacian in a bounded domain. Recently some fractional regularization methods are developed for solving all kinds of ill-posed problems. Please refer to [5-11].

Let Ω be a bound domain in \mathcal{R}^d ($d \in \mathcal{N}$) with sufficient smooth boundary $\partial \Omega$, now we consider the following backward heat equation with fractional Laplacian as follows:

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email addresses:* 1938854711@qq.com (J.L. Wang), xiongxt@gmail.com (X.T. Xiong), 1160186216@qq.com (X.X.Cao)

$$\begin{cases} D_t^{\alpha} u(x,t) = -A^{\beta} u(x,t), & (0,T) \times \Omega, \\ u(x,T) = g(x), & \Omega, \\ u(x,t) = 0, & (0,T) \times \partial \Omega, \end{cases}$$
(1.1)

where $0 \le \alpha \le 1$, $0 \le \beta \le 1$ and the Dirichlet-Laplacian *A* is

$$\begin{cases} Af := -\Delta f = -\sum_{j=1}^{d} \partial_j^2 f, \\ D(A) := \mathcal{L}^2(\Omega) \cap \mathcal{H}_0^1(\Omega) \cap \mathcal{W}^{2,2}, \end{cases}$$
(1.2)

here $\mathcal{W}^{m,p}(\Omega)$ is the Sobolev space.

And D_t^{α} is the Caputo fractional derivative of order α ($0 \le \alpha \le 1$) defined by

$$D_t^{\alpha} u(x,t) = \begin{cases} \frac{1}{\Gamma(1-\alpha)} \int_0^t \frac{u_{\tau}(x,\tau)}{(t-\tau)^{\alpha}} d\tau, & 0 < \alpha < 1, \\ u_t(x,t), & \alpha = 1. \end{cases}$$
(1.3)

We want to recover the solution f(x) := u(x,0). Due to the ill-posedness, some regularization methods must be applied [12-14]. But in this paper, we use a new fractional Tikhonov method.

The outline of the paper is as follows: in Section 2, we give some preliminary results; In order to overcome the difficulty, a novel a priori bound is introduced in Section 2, a conditional stability result is also given; Meanwhile, we propose a fractional Tikhonov regularization method and give convergence estimate under a priori assumption in section 4.

2 Preliminaries

Throughout this paper, we use the following definitions and Lemmas.

Lemma 2.1. ([15]) There exist $\{\lambda_i\}_{i \in \mathcal{N}} \in \mathcal{R}$ and $\{\varphi_i\}_{i \in \mathcal{N}} \in D(A)$ such that

- (i) $A(\varphi_j) = \lambda_j \varphi_j$,
- (ii) $0 < \lambda_1 < \lambda_2 < \lambda_3 < \cdots$,
- (iii) $\lim_{i\to\infty} \lambda_i = \infty$, furthermore, for each $f \in \mathcal{L}^2(\Omega)$,

$$f = \sum_{j=1}^{\infty} \langle f, \varphi_j \rangle \varphi_j \quad \text{in } \mathcal{L}^2$$
(2.1)

and for each $i, j \in \mathcal{N}$,

$$\langle \varphi_i, \varphi_j \rangle = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases}$$
(2.2)

that is, $\{\varphi_i\}_{i \in \mathcal{N}}$ is an orthonormal basis of $\mathcal{L}^2(\Omega)$.