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Abstract In this paper, we discuss the relationship between the sparse symmetric
Broyden (SPSB) method [1, 2] and m-time secant-like multi-projection (SMP) method
[3] and prove that when m goes to infinity, the SMP method is corresponding to the
SPSB method.
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1 Introduction

Consider the unconstrained minimization problem

min
x∈Rn

f(x), (1.1)

where f : Rn → R is twice continuous differentiable. We assume that some sparse pattern is
known for the Hessian H(x) = 52f(x), i.e., some entries of H(x) are known to be zeros for all
x ∈ Rn. To solve (1.1), we consider the following Newton-like iterative method:

xk+1 = xk −B−1
k g(xk), k = 0, 1, 2, · · · , (1.2)

where g(x) = 5f(x) is the gradient of f , and Bk is an approximation to H(xk). We assume
that Bk is symmetric and has the same sparsity as the Hessian.

To find a Bk which is a good apprixmation to H(xk) and which is not expensive has been
an active topic . Powell[1] and Toint[2] proposed a secant update called the sparse symmetric
Broyden (SPSB) update, which can maintain the sparsity, i.e., it does not change the elements
of Bk corresponding to known zero entries in the Hessian of the objective function. The SPSB
method is quite successful in practice since it not only can save computer storate but also take
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less number of iterations to get the solution than the Powell symmetric Broyden (PSB) method
(see [1,4]) for many sparse problems. However, to get the updated matrix, one has to solve an
additional sparse, symmetric and positive definite system of linear equations at each iteration,
the computational cost of which is significant comparing to the whole procedure. Moreover, the
coding is quite complicate, specially for the degenerate case.

In paper [3], we have presented a secant-like multi-projection update. The basic idea of
this update is that at step k we do m(m ≥ 1) times PSB update, and at each time, we did not
compute the updated elements corresponding to the known zero entries of the matrix. We have
shown that the m-time secant-like multi-projection (SMP) method was locally q-superlinearly
convergent for any M ≥ 1.

In this paper, we will show that this procedure is acturally equivalent to two projections.
After repeating this procedure j times, we get a sparse matrix Bj

k, j = 1, 2, · · · ,m and we set
Bk+1 = B

(m)
k . The updated matrix Bk+1 does not satisfy the secant equation. However, we will

show that B
(m)
k converges to BSPSB

k+1 with m goes to infinity, where BSPSB
k+1 is the updated matrix

by the SPSB method.

Now we list some notations which will be used in the following context.

(1) Let L(Rn) be the set of all real n× n matrices.

(2) Let M1 denote the set of all symmetric matrices which satisfy the secant equation, i.e.,

M1 = {B ∈ L(Rn) : BT = B,Bs = y}.

(3) Let Ω be the set of the index pairs (i, j) where the entry at the ith row and jth column
of the Hessian is known to be nonzero, i.e.,

Ω = {(i, j) : (H(x))ij 6= 0,∃x ∈ Rn}.

(4) Denote the sparse pattern of the jth row (j = 1, 2, · · · , n) by

Zj ∈ Rn : Zj = {v ∈ Rn : eT
j v = 0, for all i such that (i, j) 6∈ Ω},

(5) Let M2 be the below space of all matrices with the same sparsity as the Hessian, i.e.,

M2 = {A ∈ L(Rn) : AT ej ∈ Zj , j = 1, 2, · · · , n}.

(6) Let Dj be a projection of Rn onto Zj , i.e.,

Dj = diag(dj1, dj2, · · · , djn),

where
dji =

{ 1, ifej ∈ Zj ,
1, otherwise.

(7) Let ‖ · ‖ denote the l2-norm of a vector, ‖ · ‖2 denote the induced matrix norm by the
l2-vector norm and ‖ · ‖F denote the Frobinius norm of a matrix. Let 〈·, ·〉 denote the inner
proudct of two vectors.

(8) Let ei, i = 1, · · · , n be the ith column of the identify matrix.

(9) Suppose A ∈ L(Rn), let σ(A) denote the set of all eigenvalues of A.


