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Abstract. The momentary state of a semiconductor device is described by a system of three
nonlinear partial differential equations. A finite difference scheme for simulating transient
behaviors of a semiconductor device on grids with local refinement in time and space is
constructed and studied. Error analysis is presented and is illustrated by numerical examples.
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1 Introduction

We shall consider a system of three nonlinear partial differential equations in a bounded domain
Ω, which forms a basic model of one-dimensional transient behavior of a semiconductor device
[1-3]:
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−R(e, p), (x, t) ∈ Ω × J, (1)
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−R(e, p), (x, t) ∈ Ω × J.

The electrostatic potential equation is elliptic. The electron and the hole density equations are
parabolic equations. The unknowns are the electrostatic potential ψ and the electron and the hole
densities e and p. All coefficients appearing in (1) are supposed to be suitably smooth functions
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and have positive lower and upper bounds. α = q/ε, where q and ε are positive constants(q is
the electron charge, ε is the permittivity). Ds(x) and µs(x)(s = e, p) are the diffusion coefficient
and the transient respectively. N(x) is a given function and changes rapidly near the p-n node
of a semiconductor device. R(e, p) is the recombination rate.

In addition, we have initial and boundary conditions:

e(x, 0) = e0(x), p(x, 0) = p0(x), x ∈ Ω, (2)

ψ|∂Ω = ψ̄(x, t), e|∂Ω = ē(x, t), p|∂Ω = p̄(x, t), (x, t) ∈ ∂Ω × J. (3)

Douglas and Yuan put forward practical finite difference methods for one and two dimensional
semiconductor models and provide some theoretical analyses [2,3]. According to practical nu-
merical simulations of semiconductor devices, grids near the p-n node need to be refined locally.
In this way, we can improve computational precision greatly with a little increase of computa-
tional cost [4]. Ewing and Lazarov proposed some finite difference approximations of the ellipse
equation on grids with local refinement in space [5]. Cai and Mccormick analyze stationary local
grid refinement for the diffusion equation [6]. Ewing, Lazarov and Vassilevski derive implicit
schemes on the basis of a finite volume approach [7]. Ewing and Lazarov construct and study fi-
nite difference schemes for transient convection-diffusion problems on grids with local refinement
in time and space [8].

In this paper, we study a finite difference scheme on grids with local refinement in time
and space for one-dimensional transient behavior of a semiconductor device. The electrostatic
potential equation is approximated by a central difference scheme. The electron and the hole
density equations are discretized by modified upwind schemes. Linear interpolation is utilized at
the slave nodes. We derive the error estimate in the maximum norm for the electron and the hole
density equations. Finally, numerical examples illustrating the theory are given. It is of great
importance for the research on theory and application of numerical simulations of semiconductor
devices.

The paper is organized as follows. In Sections 2-4 we consider the finite difference scheme
with local refinement in time. In Section 2 we introduce the necessary notations. In Section 3 the
finite difference scheme is constructed. The error analysis is addressed in Section 4. In Section
5 we consider schemes on grids with local refinement in time and space, and again discuss their
approximation properties. Finally in Section 6 we present some numerical experiments.

2 Notations

First, Ω = [0, 1] is discretized using a regular grid with a parameter h. The spatial nodes of the
grid on Ω are then defined by x = nh, where n = 0, 1, · · · , N , h = 1/N . Next, we introduce closed
intervals {Ωk}

M
k=1

, which are subsets of Ω with boundaries aligned with the spatial discretizaton

already defined. Further, it is required that
⋃M
k=1

Ωk ⊂ Ω, and we set Ω0 = Ω \
⋃M
k=1

Ωk. In
order to avoid unnecessary complications, we assume that dist(Ωi,Ωj) ≥ lh for i, j > 0, where
l > 1 is an integer.

With each subdomain Ωi, we associate corresponding sets of nodal points: ωi is defined to
be the set of all nodes of the discretizaton of Ω that are in Ωi. We require ωi

⋂

ωj = ø, for i 6=
j, i, j = 0, · · · ,M . And assume that there is no spatial refinement. In each ωi, i = 0, · · · ,M , we
define a subset of boundary nodes γi as the nodes which have at least one neighbor not in ωi, γi
contains only nodes which do not reside on the boundary of Ω in case ∂Ωi ∩ ∂Ω 6= ø. Then set

ω =
⋃

M

i=0
ωi.


