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Abstract. A compound option is simply an option on an option. In this short paper,
by using a martingale technique, we obtain an analytical formula for pricing compound
European call options. Numerical results are given to explain some economic phenomenon.
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1 Introduction

A compound option is defined to be an option on an option. Therefore, a compound option has
two expiration dates and two strike prices. For instance, we consider an European style call on
a call. On the first expiration date T , the option holder has the right to buy a new call using
the strike price KT . The new call will have an expiration date U and a strike price KU . An
important paper [4] on the valuation of compound option was written by Geske in 1979. Up
to now, many works on compound options have been published, see [1, 3, 9, 11] and references
therein.

In fact, the pricing of many other derivatives can be modeled as compound options. For
example, by visualizing the underlying stock as an option on the firm value, an option on stock
of a firm that expires earlier than the maturity date of the debt issued by the firm can be
regarded as a compound option on the firm value [4]. On the expiration of the option, i.e., the
first expiration date of the compound option, the holder chooses to acquire the stock or not. The
decision depends on whether the stock as a call on the firm value is more valuable than the strike
price. Also, the strategy of sale before completion of development of a house is another typical
example of compound options [8].

In this paper, following a technique proposed in [1], we give an analytical formula for pricing
compound European call options. Numerical results are given to explain some economic phe-
nomenon. We remark that although we only consider the case of a call on a call option, the
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generalization to some other type of compound options, e.g., a call on a put, a put on a call, etc,
is straightforward.

We give a mathematical framework of compound options first. Let (Ω,F ,P) be a complete
probability space with a filtration {Ft} satisfying the usual conditions [3,6,10], and let W (t) be
a standard ({Ft},P)-Brownian motion. We consider a financial market consists of an underlying
asset whose price S(t) is given by the following stochastic differential equation:

dS(t) = µ(t)S(t)dt + σ(t)S(t)dW (t),

with S(0) = s0 > 0, and a money market account whose price R(t) is given by

dR(t) = γ(t)R(t)dt, R(0) = 1. (1)

Here µ(t) and σ(t) are {Ft}-adapted processes such that for any t > 0,

E
[ ∫ t

0 µ(s)ds
]

< ∞ and E
[ ∫ t

0 σ2(s)ds
]

< ∞,

and γ(t) is a bounded and measurable deterministic function.
Let U > 0 be a fixed time. For an European type call option on S(·) with maturity U and

strike price KU , it is well-known that its claim X is given by

X =
(

S(U) − KU

)+
.

Assume that there exists an {Ft}-adapted process λ(t) which satisfies

λ(t) · σ(t) = µ(t) − γ(t), 0 ≤ t ≤ U,

and the Novikov’s condition [1]:

E

[

exp

{

∫ U

0

1

2
λ2(s)ds

}]

< ∞.

Then by the Girsanov’s theorem [1,7], we can define a new equivalent probability measure P̃ on
(Ω,FU ) by

dP̃/dP = exp
{

−
∫ U

0

λ(s)dW (s) − 1

2

∫ U

0

λ2(s)ds
}

such that W̃ (t) = W (t) +
∫ t

0
λ(s)ds, 0 ≤ t ≤ U , is a standard ({Ft}, P̃)-Brownian motion, and

the price process S(t) satisfies

dS(t) = γ(t)S(t)dt + σ(t)S(t)dW̃ (t), 0 ≤ t ≤ U, (2)

i.e., P̃ is the risk-neutral probability measure (the equivalent martingale measure). Hence, by
the well-known fact in mathematical finance [1], we know that the value of X for the numeréraire
R(t) in (1) at time 0 ≤ t ≤ U is given by

X(t) = e−
R

U

t
γ(s)ds

E
P̃

[(

S(U) − KU

)

1{S(U)>KU} | Ft

]

,

where E
P̃
[·] denotes the expected value with respect to the probability P̃. Now, we can introduce

a compound call option Y on X(t) with maturity 0 < T < U and strike price KT , i.e.,

Y (T ) =
(

X(T )− KT

)+
.

We emphasize here that for compound options, to our knowledge, only the constant case of µ, σ
and γ are considered in the literature, see [1].


