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Abstract. This paper proposes a class of semi-discrete and fully discrete weak
Galerkin finite element methods for unsteady natural convection problems in two
and three dimensions. In the space discretization, the methods use piecewise poly-
nomials of degrees k, k− 1, and k (k ≥ 1) for the velocity, pressure and temperature
approximations in the interior of elements, respectively, and piecewise polynomials
of degree k for the numerical traces of velocity, pressure and temperature on the
interfaces of elements. In the temporal discretization of the fully discrete method,
the backward Euler difference scheme is adopted. The semi-discrete and fully dis-
crete methods yield globally divergence-free velocity solutions. Wellposedness of the
semi-discrete scheme is established and a priori error estimates are derived for both
the semi-discrete and fully discrete schemes. Numerical experiments demonstrate
the robustness and efficiency of the methods.
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1. Introduction

Let Ω = Ωf∪Ωs ⊂ Rd (d = 2, 3) be a polygonal/polyhedral domain with two disjoint
polygonal/polyhedral subdomains Ωf and Ωs. We consider the following unsteady
natural convection (or conduction-convection) problem: seek the velocity u(x, t) : Ω×
[0, t∗] → Rd, the pressure p(x, t) : Ω × [0, t∗] → R and the temperature T (x, t) :
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Ω× [0, t∗]→ R such that

ut − Pr ∆u+ (u · ∇)u+∇p− PrRajT = f in Ωf × [0, t∗],
∇ · u = 0 in Ωf × [0, t∗],
Tt −∇ · (κ∇T ) + (u · ∇)T = g in Ω× [0, t∗],
u(x, 0) = u0(x) in Ωf ,
T (x, 0) = T0(x) in Ω,
u ≡ 0 in Ωs ∪ ∂Ωf × [0, t∗],
T = 0 on ∂Ω× [0, t∗].

(1.1)

Here Pr and Ra denote the Prandtl number and Rayleigh number, respectively. κ > 0
is the thermal conductivity parameter with κ = κf in Ωf and κ = κs in Ωs and kf and
ks are positive constants. j is the vector of gravitational acceleration with j = (0, 1)T

when d = 2 and j = (0, 0, 1)T when d = 3. f(x, t), g(x, t) are the forcing functions.
And u0(x) and T0(x) are initial data satisfying u0|∂Ωf

= 0, T0|∂Ω = 0.
The model problem (1.1), arising both in nature and in engineering applications, is

a coupled system of fluid flow, governed by the incompressible Navier-Stokes equations
and heat transfer, governed by the energy equation. Natural convection heat transfer
in a partially heated enclosure is an important issue due to its wide applications in
buildings or cooling of flush mounted electronic heaters. In [3] error analysis were
carried out for some semi-discrete finite element methods. A characteristic variational
multiscale method was proposed in [1]. In [27] Petrov-Galerkin least squares mixed fi-
nite element methods were developed. A modified characteristics Gauge–Uzawa finite
element method was presented in [39] which combines the modified characteristics
finite element method and the Gauge–Uzawa method. In [40] a divergence-free fully
discrete mixed finite element method was given using the Crank–Nicolson extrapola-
tion scheme in the temporal discretization. We also refer to [4,14,15,19,20,26,28–31,
35, 36, 38, 42, 50, 51] for some other developments of efficient numerical methods for
the steady and unsteady natural convection problems.

In [18], a class of globally divergence-free weak Galerkin (WG) finite element
methods were developed and analyzed for the steady natural convection problems.
The WG method was first proposed and analyzed to solve second-order elliptic prob-
lems [43,44]. It is designed by using a weakly defined gradient operator over functions
with discontinuity and then allows the use of totally discontinuous functions in the fi-
nite element procedure. In [5], a class of robust globally divergence-free weak Galerkin
methods for Stokes equations were developed and then were extended in [52] to solve
incompressible quasi-Newtonian Stokes equations. We refer to [6–9, 16, 21, 23, 25, 32,
45–49,53] for some other developments and applications of the WG method. We note
that in some special cases, the WG method is equivalent to the hybridized discontinu-
ous Galerkin (HDG) method proposed in [11]; see, e.g., [10,12,13,22,24,34] for some
related works on the HDG method.

In this paper, we shall consider semi-discrete and fully discrete WG methods based
on [18] for the unsteady natural convection problem (1.1). The methods include as
unknowns the velocity, pressure and temperature variables both in the interior of ele-


