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Abstract. We introduce a low order finite element method for three dimensional
elasticity problems. We extend Kouhia-Stenberg element [12] by using two noncon-
forming components and one conforming component, adding stabilizing terms on
the associated bilinear form to ensure the discrete Korn’s inequality. Using the sec-
ond Strang’s lemma, we show that our scheme has optimal convergence rates in L2

and piecewise H1-norms even when Poisson ratio ν approaches 1/2. Even though
some efforts have been made to design a low order method for three dimensional
problems in [11, 16], their method uses some higher degree basis functions. Our
scheme is the first true low order method. We provide three numerical examples
which support our analysis. We compute two examples having analytic solutions.
We observe the optimal L2 and H1 errors for many different choice of Poisson ra-
tios including the nearly incompressible cases. In the last example, we simulate the
driven cavity problem. Our scheme shows non-locking phenomena for the driven
cavity problems also.
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1. Introduction

We consider the following type of elasticity equation in a convex polyhedral domain
Ω in R3:

− divσ(u) = f in Ω, (1.1a)

u = 0 in ∂Ω, (1.1b)

where u = (u1, u2, u3) is the displacement variable and f ∈ [L2(Ω)]3 is an external
force. We may also consider the pure traction problems, but we choose the Dirichlet
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boundary conditions just for simplicity of presentation. Here, the strain tensor ε(u)
and the stress tensor σ(u) are as usual,

εij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, σ(u) = 2µε(u) + λtr(ε(u))I,

where I is 3 × 3 by identity matrix. The Lamé constants µ and λ are given in terms of
modulus of elasticity E > 0 and Poisson’s ratio 0 < ν < 1/2,

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
.

We note that as ν → 1/2, the parameter λ goes to infinity, as in incompressible case.
It is well known that conforming low order finite elements for solving elastic-

ity problem usually yields a locking phenomena as the Poisson ratio approaches to
1/2 [15]. For nonconforming elements, the associated bilinear form fails to satisfy the
discrete Korn’s inequality [9]. Hence the coerciveness does not hold. The analyses re-
garding the locking phenomena in [9,15] are developed in two dimensional problems.
However, by restricting to R2, we can see that low order methods are also locking
in R3. Thus, to obtain optimal convergence rates using Lagrangian type of finite el-
ement methods, one must use polynomial of order ≥ 4, when the material is nearly
incompressible [15]. However, some nonconforming elements of degree ≥ 2 converges
uniformly as the Poisson ratio approaches 1/2 [9].

Some efforts have been made to avoid locking phenomena using lower order non-
conforming methods. One often uses reduced integration or macro element tech-
nique [4, 9]. Some people apply the mixed methods [5] to elasticity equations
(see [14]). Other approaches are to design the finite element (FE) space or to modify
the bilinear form to satisfy the discrete Korn’s inequality. Kouhia-Stenberg (KS) [12]
used conforming-nonconforming pair for two dimensional problems, while Hansbo, et
al. [10] used nonconforming pair with stability terms to enforce coerciveness. How-
ever, it was shown [11, 16] that a straightforward extension of KS element to three
dimensional case is impossible. For example, the pair (P 1

n , P
1
n , P

1
c ) would not satisfy

the Korn’s inequality if we restrict it to the first two components. The authors in [16]
used Q2-conforming space in one of the components while the authors in [11] used
bubble functions of degree 3 in one of the components.

In this paper, we present a simple extension of KS element to three dimensional
elasticity problems using the pair (P 1

n , P
1
n , P

1
c ). Instead we add stability terms on the

first two component, which yields the smaller number of degrees of freedom than the
spaces introduced in [11, 16]. The concept of adding stabilizing term on the bilinear
form is motivated by [10, 13]. With the aid of the stabilizing term, we were able to
prove that our scheme is stable, i.e., the bilinear form is coercive with respect to broken
H1-norm. In this way, we obtain a new extension of KS method to 3D element using
only piecewise linear functions, while the number of unknowns is about 69 percent
of (P 1

n , P
1
n , P

1
n) elements (see Example 4.2). We provide optimal error estimates in


