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Abstract. This work is concerned with numerical schemes for stochastic optimal
control problems (SOCPs) by means of forward backward stochastic differential
equations (FBSDEs). We first convert the stochastic optimal control problem into
an equivalent stochastic optimality system of FBSDEs. Then we design an efficient
second order FBSDE solver and an quasi-Newton type optimization solver for the
resulting system. It is noticed that our approach admits the second order rate of
convergence even when the state equation is approximated by the Euler scheme.
Several numerical examples are presented to illustrate the effectiveness and the ac-
curacy of the proposed numerical schemes.
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1. Introduction

On a complete probability space (Ω,F ,P) with the natural filtration Ft = σ{Ws; 0 ≤
s ≤ t}, we consider a controlled diffusion process Xt (also known as the controlled
state), governed by the stochastic differential equation (SDE){

dXt = b(t,Xt, αt)dt+ σ(t,Xt, αt)dWt, t ∈ (0, T ],

X0 = x0,
(1.1)
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where Wt = (W1,t, · · · ,Wm,t)
> is a standard m-dimensional Brownian motion, αt is

the control process, Xt is called the trajectory with respect to αt, and

b : [0, T ]× Rd × Rk → Rd and σ : [0, T ]× Rd × Rk → Rd×m

are deterministic functions that are referred as the drift and diffusion coefficients, re-
spectively.

The admissible control set U for the αt is defined as

U = {α· ∈M 2(Rk)
∣∣αt ∈ U, t ∈ [0, T ], a.e., a.s.},

where M 2(Rk) denote the space of all the Ft-adapted processes valued in Rk :

E
[∫ T

0
|Xt|2 dt

]
<∞.

Here U is a nonempty, convex and closed subset of Rk. For α· ∈ U , it is well known
that (1.1) admits a unique solution Xt under standard conditions on b and σ (e.g.,
Liptchiz continuous).

The cost functional J(α·) : U → R under consideration is

J(α·) = E
[∫ T

0
f(t,Xt, αt)dt+ ϕ(XT )

]
, (1.2)

where f(t, x, α) : [0, T ]× Rd × Rk → R and ϕ(x) : Rd → R are deterministic functions
that are called the running cost and the terminal cost, respectively.

The SOCP is to find α∗· ∈ U such that J(α∗· ) attains its minimum over the admissible
control set, i.e.,

J(α∗· ) = min
α·∈U

J(α·), α∗· = arg min
α·∈U

J(α·), (1.3)

where α∗· and J(α∗· ) are called the optimal control and the optimal value, respectively.
In the theoretical point of view, one of the most popular approaches for studying

the above SOCPs is the Pontryagin’s maximum principle [5, 22, 24, 33]. For stochas-
tic problems, essential difficulties arise when the diffusion coefficients depend on αt.
This was overcome by Peng [26] by considering the second-order term in the Taylor
expansion of the spike variation, yielding a more general version of stochastic max-
imum principle. Another popular approach is the Bellman’s dynamic programming
that involves the Hamilton-Jacob-Bellman (HJB) equations [2–4, 6, 10, 18]. Based the
backward stochastic differential equations (BSDEs) theory [25, 28], the generalized
dynamic programming principle and HJB equations have also been developed in [29].
Moreover, the nonlinear Feynman-Kac formula [27] established a relationship between
SOCPs and PDE constrained optimal control problems [8,13,17,21].

Numerical methods for SOCPs have drawn more and more attention in recent years.
While most attempts have been made by solving the associated HJB equations (e.g., [1,
16, 19, 20, 36, 37, 39, 40]), little attention has been paid to develop direct stochastic


