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Abstract. We describe an algorithm that localizes the zeros of a given real C2-
function f on an interval [a, b]. The algorithm generates a sequence of subintervals
which contain a single zero of f . In particular, the exact number of zeros of f on
[a, b] can be determined in this way. Apart from f , the only additional input of the
algorithm is an upper and a lower bound for f ′′. We also show how the intervals
determined by the algorithm can be further refined until they are contained in the
basin of attraction of the Newton method for the corresponding zero.
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1. Introduction

A fundamental task, both in pure and in numerical analysis, is to localize and to
count the zeros of a given function f in a certain region. For example the Argument
Principle and Rouché’s theorem for holomorphic functions allow to determine the num-
ber of zeros of f , counted with their multiplicity, in a bounded domain of C with suf-
ficiently regular boundary (see, e.g., [5] for an overview of methods used for analytic
functions). In real analysis Sturm’s theorem, a refinement of Descartes’ Sign Rule and
the Fourier-Budan theorem, allows to count the exact number of roots of a polynomial
p with simple roots on a real interval (see, e.g., [3,9,10]). Several attempts have been
made to transfer the method of Sturm to trigonometric polynomials: see [1,7,8]. The
mentioned methods are restricted to holomorphic functions and polynomials, respec-
tively. If we consider a function f which is merely continuous, the theorem of Bolzano
yields the information that f has at least one zero on an interval [a, b] if f has opposite
signs at its endpoints. An iterative method to enclose all real zeros of a real function in
an interval of minimal length has been discussed in [6]. Only recently, a method which
counts the zeros of a function f under only mild regularity conditions on an interval

∗Corresponding author. Email address: norbert.hungerbuehler@math.ethz.ch (N. Hungerbühler)

http://www.global-sci.org/nmtma 320 c©2020 Global-Science Press



An Algorithm That Localizes and Counts the Zeros of a C2-Function 321

[a, b] has been proposed in [4]. In particular, if an L∞-bound on the second derivarive
of

f ′2 − ff ′′

f2 + f ′2

is known, then the number of zeros of f can be computed by evaluating f, f ′ and f ′′ on
a fine enough grid. In the present paper, we would like to present an algorithm which
works for functions f ∈ C2([a, b]) and which only requires an upper and a lower bound
for f ′′ (see Section 3). The termination proof will be given in Section 4. This algorithm
can in particular be used as a preconditioner for other algorithms like Newton’s or
Aitken’s method to compute the zeros numerically (see Section 5). But first we need a
refinement of Bolzano’s theorem.

2. Refinement of Bolzano’s theorem

We start from the following elementary observation:

Lemma 2.1. Let f, g ∈ C2([a, b]) be functions with f(a) = g(a), f(b) = g(b) and f ′′ ≤ g′′
on [a, b]. Then, we have f ≥ g on [a, b].

Proof. Let h := g − f . Then we have h(a) = h(b) = 0 and h′′ ≥ 0 on [a, b]. Hence, h
is convex and therefore we conclude h ≤ 0 on [a, b]. �

Now we want to formulate a criterion which ensures that a function f ∈ C2([a, b])
does not have a zero. To do so, we will use Lemma 2.1 with a comparison function g of
constant second derivative. First, we note the following:

Lemma 2.2. Let g : [a, b] → R be the unique function g with g(a) = α, g(b) = β and
g′′ = γ on [a, b]. Then we have

min g =


1

2

(
α+ β − γ

4
(b− a)2 − (β − α)2

γ(b− a)2

)
, if γ(b− a)2 > 2|β − α|,

min{α, β}, otherwise.
(2.1)

Proof. The proof is an elementary calculation. �

As a consequence of Lemma 2.2 we now get:

Corollary 2.1. Let f ∈ C2([a, b]) be a function with f(a) = α > 0, f(b) = β > 0 and
f ′′ ≤ γ on [a, b]. If

γ(b− a)2 ≤ 2|β − α| or 4(α+ β) > γ(b− a)2 +
4

γ

(
β − α
b− a

)2

,

then f has no zero on [a, b].


