
Numer. Math. Theor. Meth. Appl. Vol. 13, No. 2, pp. 372-399
doi: 10.4208/nmtma.OA-2019-0110 May 2020

Error Analysis of SAV Finite Element Method to
Phase Field Crystal Model

Liupeng Wang1, Yunqing Huang1,2,3 and Kai Jiang1,2,3,∗

1 School of Mathematics and Computational Science, Xiangtan University,
Xiangtan, Hunan 411105, China
2 Hunan Key Laboratory for Computation and Simulation in Science and
Engineering, Xiangtan, Hunan 411105, China
3 Key Laboratory of Ministry of Education for Intelligent Computing and
Information Processing, Xiangtan University, Xiangtan, Hunan 411105, China

Received 21 July 2019; Accepted (in revised version) 7 October 2019

Abstract. In this paper, we construct and analyze an energy stable scheme by com-
bining the latest developed scalar auxiliary variable (SAV) approach and linear finite
element method (FEM) for phase field crystal (PFC) model, and show rigorously that
the scheme is first-order in time and second-order in space for the L2 andH−1 gradi-
ent flow equations. To reduce efficiently computational cost and capture accurately
the phase interface, we give a simple adaptive strategy, equipped with a posteriori
gradient estimator, i.e., L2 norm of the recovered gradient. Extensive numerical
experiments are presented to verify our theoretical results and to demonstrate the
effectiveness and accuracy of our proposed method.
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1. Introduction

The phase field crystal (PFC) model [1,2] was proposed as an approach to simulate
crystals at the atomic scale but on a coarse-grained diffusive time scale [4]. Many
physical processes, such as the formation of ordered structures, phase separation of
polynary systems, can be described using this model. The PFC model can also explain
elastic and plastic deformations of the lattice, dislocations, grain boundaries, multiple
crystal orientations and many other observable phenomena [4,6].

There are several kinds of PFC models. In general, they can be classified into
two classes according to characteristic length scale: one-length-scale and multi-length-
scale. One-length-scale PFC models can be used to describe the phase behavior of
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periodic structures [7–9]. Accordingly, multi-length-scale PFC models can be employed
to explain the formation of quasicrystals [10,11]. In this work, we focus on the devel-
opment of numerical methods of one-length-scale PFC model. In particular, the classic
Landau-Brazovskii (LB) model [7, 12, 13] will be used to demonstrate our proposed
method. The LB model was built to investigate the character of phase transition. It has
been discovered in many scientific fields. For example, the LB model can be derived
from more complicated self-consistent field theory of diblock copolymers [14]. Com-
pared with the typical Swift-Hohenberg (SH) model with double-well bulk energy [8],
LB energy functional includes a cubic term which can be used to study the first-order
phase transition.

The L2 (Allen-Cahn) or H−1 (Cahn-Hilliard) gradient flow equation is usually
adopted to describe the dynamic behavior of the phase-field or PFC model. These
dynamic equations are time-dependent nonlinear partial differential equations (PDEs).
It is hard to find non-trivial analytical solutions. Therefore, numerically solving these
nonlinear PDEs is an efficient approach. To guarantee convergence, numerical schemes
of these equations are required to satisfy the energy dissipation property. Meanwhile,
an accurate and efficient approach should be designed to deal with nonlinear terms.
In terms of time discretization, there have been several effective methods which can
preserve energy dissipation law, including the convex splitting method [4,15–21], sta-
bilized approach [22–25], invariant energy quadratization (IEQ) method [19, 26] and
recently developed scalar auxiliary variable (SAV) approach [29]. By introduing a scale
auxiliary variable to the nonlinear part of energy functional, the SAV approach has a
modified energy dissipation property for a large class of gradient flows. The convergent
and error analysis of semi-discrete SAV scheme has been given by Shen and Xu [41].
The analysis of energy stability and convergence of fully discretized SAV block-centered
finite difference method has been established for gradient flows [40]. More studies
about the PFC problem can be found in recent literature [16,17,43–45].

In the study to the PFC model, finite difference methods [2–5,46] or spectral meth-
ods [27–29] are limited to regular regions, such as two-dimensional square region
or three-dimensional cube region. For complex geometries, finite element method
(FEM) [30, 42, 55] is a better choice. Furthermore, the FEM can be further com-
bined with adaptive technologies, which are well suitable for the phase behavior of
PFC models, such as the formation of ordered structures, phase transition processes,
and coarse-grained processes. The adaptive method can effectively decrease the cost of
computing and accurately capture the phase interface.

In this work, we will combine SAV time discretization and FEM spatial discretization
to solve the gradient flow equation of LB model. Based on the energy dissipation and
the SAV scheme, the derivation process of H2 bounds of the solution is shown in detail.
For our fully discrete scheme, we demonstrate its energy stability, and carry out error
estimate. Applying our method, we can effectively simulate the mesoscale self-assembly
of the diblock copolymer system in two-dimensional convex geometries. In addition,
we will consider an adaptive FEM for the PFC model. There are many adaptive finite
element methods for phase field equation [49–53]. To reduce computational cost, we


