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Abstract. In this paper, we study the finite element methods for distributed optimal
control problems governed by the biharmonic operator. Motivated from reducing
the regularity of solution space, we use the decoupled mixed element method which
was used to approximate the solution of biharmonic equation to solve the fourth
order optimal control problems. Two finite element schemes, i.e., Lagrange con-
forming element combined with full control discretization and the nonconforming
Crouzeix-Raviart element combined with variational control discretization, are used
to discretize the decoupled optimal control system. The corresponding a priori error
estimates are derived under appropriate norms which are then verified by extensive
numerical experiments.
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1. Introduction

In recent years, the optimal control problems governed by partial differential equa-
tions (PDEs) have attracted a lot of attention worldwide, and become an active research
topic in related fields because of their extensive practical applications in material de-
sign, temperature control, spaceflight, hydrodynamics, aerodynamics and engineering
aspects etc. Although the theory and numerical simulation for PDE-constrained control
problems have been developed rapidly in the past thirty years, there is still an urgent
demand in more advanced and deeper theoretical and numerical results.
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The numerical methods for optimal control problems governed by second order dif-
ferential equations have been well studied, the theory and algorithms are relatively
mature, see, for example, [1, 9–12, 19, 21–24, 28, 30, 37, 41, 43, 46]. We also refer to
monographs [29, 35, 36, 44] for further advance. However, there are only few results
on optimal control problems governed by the fourth order operator. The main difficulty
of which lies in the design of proper numerical discretization method for higher order
problems. For example, if the conforming element is applied directly to the fourth or-
der elliptic equation ∆2y = f , the finite element space must be contained in C1(Ω̄),
i.e., both the piecewise polynomials and their derivatives are required to be continuous
across the edges of the element. However, constructing such a finite element space
requires the use of fairly sophisticated finite elements. The resulting computational
difficulty is undoubtedly a great challenge. Therefore, some alternative methods are
proposed to alleviate the related computational difficulty, for instance the nonconform-
ing method, in which the finite element space is only a subspace of H1(Ω), or even a
subspace of L2(Ω) (see [13]). Generally speaking, there are two kinds of numerical
methods for solving this problem: the direct method by using nonconforming finite
elements (see [13, 40, 45]) and the mixed finite element method (see [5, 14, 31, 39]).
Here we focus on the latter.

Concerning mixed finite element methods (FEMs) for fourth order problem, there
are several well-known schemes, such as Ciarlet-Raviart method (see [14]), Herrmann-
Miyoshi method (see [39]) and Hellan-Herrmann-Johnson method [26,27,31]. The ba-
sic idea of Ciarlet-Raviart scheme is to introduce an auxiliary variable ω := ∆y, thereby
∆ω = f . Then the fourth order problem is decomposed into a system of two second or-
der problems. Another mixed scheme is by introducing an auxiliary variable φ := ∇2y
so that divdivφ = f and then we obtain similar two second order problems. Both
Herrmann-Miyoshi and Hellan-Herrmann-Johnson schemes rely on this form. Among
these mixed schemes, Ciarlet-Raviart mixed scheme is widely used because it has a
simple form. The convergence analysis of piecewise linear Ciarlet-Raviart mixed ele-
ment discretization was given by Scholz [42]. Later, several mixed methods including
Ciarlet-Raviart mixed element were proved to be stable with respect to some new fami-
lies of mesh dependent norms by Babuška et al. [2], where error estimates are obtained
in a simple and direct manner. However, all of these mixed schemes have drawbacks.
In Ciarlet-Raviart mixed element scheme, although (y,∆y) and its discrete form are
stable (see [4]) in H1

0 (Ω) × H−1(∆) and H1
h0(Ω) × H−1

h (∆h), respectively, H−1
h (∆h)

is mesh-dependent. Besides, the spaces H−1(∆) and H−1
h (∆h) are inconsistent which

poses difficulty on constructing nested discrete spaces. Additionally, we may also suffer
from the loss of convergence order. A similar drawback can be found for the second
kind of mixed scheme (see [33]).

Recently, Zhang et al. [34, 48, 49] proposed a stable decoupled mixed element
method. Based on the Helmholtz decomposition, the Hellan-Hermann-Johnson mixed
scheme (see [3]) was further decomposed such that the primal problem was translated
into a coupled system of five low order equations. The stability of the discrete system is
verified and the error estimation can be easily obtained. To alleviate the large scale of


