
Numer. Math. Theor. Meth. Appl. Vol. 13, No. 3, pp. 569-594
doi: 10.4208/nmtma.OA-2019-0130 August 2020

Numerical Analysis of a Dynamic Contact
Problem with History-Dependent Operators

Hailing Xuan1,∗, Xiaoliang Cheng1, Weimin Han2

and Qichang Xiao1

1 School of Mathematical Sciences, Zhejiang University, Hangzhou 310027,
Zhejiang, China
2 Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA

Received 24 August 2019; Accepted (in revised version) 7 November 2019

Abstract. In this paper, we study a dynamic contact model with long memory which
allows both the convex potential and nonconvex superpotentials to depend on history-
dependent operators. The deformable body consists of a viscoelastic material with
long memory and the process is assumed to be dynamic. The contact involves a
nonmonotone Clarke subdifferential boundary condition and the friction is modeled
by a version of the Coulomb’s law of dry friction with the friction bound depending
on the total slip. We introduce and study a fully discrete scheme of the problem, and
derive error estimates for numerical solutions. Under appropriate solution regularity
assumptions, an optimal order error estimate is derived for the linear finite element
method. This theoretical result is illustrated numerically.
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1. Introduction

Variational inequalities and hemivariational inequalities play an important role in
the study of various nonlinear boundary value problems arising in Mechanics, Physics,
Engineering Sciences and so on. For some comprehensive references, the reader is re-
ferred to [2,9–11,13,14,17,19,22] for variational inequalities, and to [16,20,21,23,25]
for hemivariational inequalities. The analysis of variational inequalities is based on
monotonicity arguments and convexity theory while the analysis of hemivariational in-
equalities uses properties of the subdifferential in the sense of Clarke defined for locally
Lipschitz functions as main ingredient and allows nonconvex functionals in formula-
tions. Variational-hemivariational inequalities represent a special class of inequalities,
where both convex and nonconvex functions are present.
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This paper is devoted to the study on numerical approximation of a general evo-
lutional variational-hemivariational inequality involving history-dependent operators
which models a dynamic contact problem with long memory. The model we consider
here was first proposed in [12]. Existence and uniqueness result of the corresponding
variational-hemivariational inequality are shown in [12]. In this paper, we consider
numerical methods to solve the model in [12]. We derive optimal error estimates for
the scheme. Since history-dependent operators appear at several places and the contact
boundary conditions are of complex form, it is challenging to derive error estimates for
numerical solutions of the model.

We first recall the model studied in [12]. Assume a viscoelastic body occupies
a Lipschitz domain Ω in Rd with d = 2, 3. We use the notation x = (xi)

d
i=1 for a

generic point in Ω = Ω ∪ ∂Ω and we denote by ν = (νi)
d
i=1 the outward unit normal

on ∂Ω. We denote by u = (ui), σ = (σij) and ε(u) = (εij(u)) the displacement
vector, the stress tensor, and linearized strain tensor, respectively. Sometimes we do
not indicate explicitly the dependence of the variables on the spatial variable x. Recall
that the components of the linearized strain tensor ε(u) are εij(u) = (ui,j + uj,i)/2,
where ui,j = ∂ui/∂xj . The indices i, j, k, l run between 1 and d and, unless stated
otherwise, the summation convention over repeated indices is used. An index following
a comma indicates a partial derivative with respect to the corresponding component of
the spatial variable x. A superscript prime of a variable stands for the time derivative
of the variable. Moreover, we use the notation vν and vτ for the normal and tangential
components of v on ∂Ω given by vν = v·ν and vτ = v−vνν. The normal and tangential
components of the stress field σ on the boundary are defined by σν = (σν) · ν and
στ = σν − σνν, respectively. The symbol Sd represents the space of second order
symmetric tensors on Rd.

The boundary ∂Ω is partitioned into three disjoint measurable parts Γ1, Γ2 and Γ3

and the measure of Γ1, denoted m(Γ1), is positive. The body is clamped on Γ1, so the
displacement field vanishes there. Time-dependent surface tractions of density f2 act
on Γ2 and time-dependent volume forces of density f0 act in Ω. The part Γ2 can be
empty. The body is in permanent contact on Γ3 with a device, say a piston. The contact
is modeled with a nonmonotone normal damped response condition associated with a
total slip-dependent version of Coulomb’s law of dry friction. We are interested in the
evolutionary process of the mechanical state of the body in the time interval (0, T ) with
T > 0. The mathematical model of the contact problem is stated as follows.

Problem 1.1. Find a displacement field u : Ω × (0, T ) → Rd and a stress field σ :
Ω× (0, T )→ Sd such that for all t ∈ (0, T ),

σ(t) = Aε(u′(t)) + Bε(u(t)) +

∫ t

0
C(t− s)ε(u′(s)) ds in Ω, (1.1a)

ρu′′(t) = Divσ(t) + f0(t) in Ω, (1.1b)

u(t) = 0 on Γ1, (1.1c)

σ(t)ν = f2(t) on Γ2, (1.1d)


