
Numer. Math. Theor. Meth. Appl. Vol. 13, No. 3, pp. 620-643
doi: 10.4208/nmtma.OA-2019-0126 August 2020

A Simple Semi-Implicit Scheme for Partial
Differential Equations with Obstacle Constraints

Hao Liu1,∗ and Shingyu Leung2

1 School of Mathematics, Georgia Institute of Technology, 686 Cherry Street,
Atlanta, GA 30332-0160, USA
2 Department of Mathematics, The Hong Kong University of Science and
Technology, Clear Water Bay, Hong Kong

Received 20 August 2019; Accepted (in revised version) 8 December 2019

Abstract. We develop a simple and efficient numerical scheme to solve a class of ob-
stacle problems encountered in various applications. Mathematically, obstacle prob-
lems are usually formulated using nonlinear partial differential equations (PDE). To
construct a computationally efficient scheme, we introduce a time derivative term
and convert the PDE into a time-dependent problem. But due to its nonlinearity,
the time step is in general chosen to satisfy a very restrictive stability condition. To
relax such a time step constraint when solving a time dependent evolution equation,
we decompose the nonlinear obstacle constraint in the PDE into a linear part and a
nonlinear part and apply the semi-implicit technique. We take the linear part implic-
itly while treating the nonlinear part explicitly. Our method can be easily applied to
solve the fractional obstacle problem and min curvature flow problem. The article
will analyze the convergence of our proposed algorithm. Numerical experiments are
given to demonstrate the efficiency of our algorithm.
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1. Introduction

In this paper, we develop efficient semi-implicit schemes to a class of obstacle prob-
lems as stated as follow [2, 5–7, 9, 25]. For a given energy functional E(u), we deter-
mine u ∈ K such that E(u) = infv∈K E(v) for some K = {v ∈ H1|v ≥ ψ in Ω, v =
g on ∂Ω}. The function ψ is a given obstacle function, Ω is the computational do-
main and g is the boundary condition. This class of problems can be found in various
fields including the classical problem of elastic membrane modeling, pricing model in
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financial mathematics, porus media computations, computing the torsion of an elastic-
plastic cylinder, Stefan problems for crystal growth simulation, min curvature flow in
image processing [20], and etc. For example, in the problem of elastic membrane
constrained on obstacle, the potential energy E(u) is given by

E(u) =

∫
Ω

1

2
|∇u|2 − fudx, (1.1)

where f is external force on u. For the minimal surface obstacle problem, the potential
energy is proportional to its surface area and it leads to the energy functional

E(u) =

∫
Ω

√
1 + |∇u|2 − fudx.

One possible numerical approach to this class of problems is the projected relax-
ation method [10, 28] which first reformulates the problem using elliptic variational
inequalities [13]. This class of methods is easy to implement and is proven to be con-
vergent. However, its convergence speed depends on the relaxation parameter and
the convergent might be slow in practice. To accelerate the algorithms, the multigrid
method has been adopted as discussed in [1,13,17,30].

Another way to solve the obstacle problem is via the optimization formulation.
In [16], a Langrange multiplier is used to incorporate the constraint in the functional.
In [24], a penalty term is introduced in the functional to encourage the solution to sat-
isfy the constraint. The solution obtained by this method is not exact and the penalty
parameter needs to be very small, of O(h−2). In [27], an L1 penalty is added to the
functional to relax the constraint of the obstacle. The equivalence of their formulation
to (1.1) is proven [8, 21]. A related splitting Bregman algorithm has recently been
implemented in [12, 27]. Note that the efficiency of this method depends on the ap-
plication and also on the choice of the parameters. For linear problems, i.e., when the
operator A is linear, this method converges very fast. But for nonlinear problems, i.e.,
in cases when we do not have any fast algorithm to invert A, the overall algorithm can
be less efficient. Anther constraint approach has been developed in [29,31] which iter-
atively identifies the subdomain where the constraint is active. For the region where the
constraint is inactive, the method recomputes the solution to the corresponding Euler-
Lagrange equation of the functional. An augmented Lagrangian active set method has
been proposed in [19] which takes advantage of the primal-dual formulation of the
discretized obstacle problem. In [33], a primal-dual hybrid gradient method is also
developed to solve the obstacle problem. Since the starting point of most of these
optimization methods is an energy form, they might not be able to easily extend to
fractional obstacle problems. Moreover, those methods are designed to solve an opti-
mization problem, they cannot be applied to flow problems where intermediate steps
contain the time evolution of the solution such as the min curvature flow problem.

In this work, we determine the minimizer of the variational problem by solving the
corresponding Euler-Lagrange equation. In particular, we solve

min(Au− f, u− ψ) = 0 on Ω (1.2)


