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Abstract. In this paper finite element approximation of space fractional optimal

control problem with integral state constraint is investigated. First order optimal

condition and regularity of the control problem are discussed. A priori error es-
timates for control, state, adjoint state and lagrange multiplier are derived. The

nonlocal property of the fractional derivative results in a dense coefficient matrix of

the discrete state and adjoint state equation. To reduce the computational cost a fast
projection gradient algorithm is developed based on the Toeplitz structure of the co-

efficient matrix. Numerical experiments are carried out to illustrate the theoretical

findings.
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1. Introduction

Fractional PDEs are widely used to model many physical process, for example,

anomalous diffusion phenomena, for which the integer order differential equations

fail to provide an accurate description. Two main features of fractional differential

equations which impact their numerical approximation are the nonlocality of fractional

differential operator, and the low regularity of the solution. The former leads to a dense

coefficient matrix in the discrete scheme such as finite element method and finite dif-

ference method, and the latter results in slow convergence of the numerical solution to

exact solution. Over the past decades lots of literatures are devoted to develop efficient

numerical methods and algorithms for fractional PDEs, for example, finite element

methods, finite volume methods and fast algorithms, see [1,10,13,14,21,29].
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In recent years optimal control problem governed by fractional PDEs has attracted

lots of attention with the rapid development of fractional calculus. The research on

numerical methods or algorithms for fractional optimal control problem forms a hot

topic. We refer to [2, 17, 22, 33–35] for finite element methods, [23, 31] for spectral

methods, and [12] for fast algorithm. Compared with numerical methods ([16, 19,

25, 30]) for optimal control problem governed by integer order PDEs the research on

fractional optimal control problem is immature. To the best of our knowledge, there are

few literatures about numerical method of state constrained optimal control problem

governed by fractional differential equation. In [32] spectral Galerkin approximation of

time fractional optimal control problem with integral state constraint was discussed. In

[4] an optimal control problem governed by fractional elliptic equation with pointwise

state constrained was investigated, where the well-posedness of the control problem

and the optimality condition was proved.

The aim of the present paper is to study finite element discretization of space frac-

tional diffusion optimal control problem with integral state constraint. Let Ω = (0, 1),
Γ = ∂Ω. We consider the following control problem

min
(y,u)∈K×Uad

J(y, u) :=
1

2
‖y − yd‖2L2(Ω) +

γ

2
‖u‖2L2(Ω) (1.1)

subject to

{
−D

(
r 0D

−(2−α)
x + (1− r)xD

−(2−α)
1

)
Dy = f + u in Ω,

y = 0 on Γ
(1.2)

and

K =

{
v ∈ L1(Ω)

∣∣∣∣
∫

Ω
vdx ≤ δ

}
.

Here yd ∈ L2(Ω) is the desired state, γ > 0 is the regularization parameter, f ∈ L2(Ω)
is a given function, δ is a fixed constant and Uad = L2(Ω). The parameters r ∈ [0, 1]
and α ∈ (1, 2). Since the cost functional is quadratic and the state constraint forms

a convex set, the existence of a unique solution (y, u) to above optimal control problem

can be guaranteed by standard control theory.

The fractional diffusion operator in (1.2) arises in a random walk process in which

the jumps have an unbounded variance, i.e., Lévy process, [5]. Physically, it can also

be interpreted as a nonlocal Fickian law [9]. The variational framework and finite

element approximation were firstly established in [13]. The regularity of the solution

to (1.2) were discussed in [14] based on the expression for the kernel of the fractional

diffusion operator. The regularity of the solution to (1.2) in weighted Sobolev space

and the corresponding spectral Galerkin approximation are discuss in [18].

To develop finite element approximation of (1.1)-(1.2) we firstly derive the first

order optimality condition and discuss the regularity of the solution to the optimal

control problem. A priori error estimates for control, state, adjoint state and lagrange

multiplier are derived. Since the coefficient matrix of the discrete state and adjoint


