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Abstract. Solving partial differential equations in high dimensions by deep neural

networks has brought significant attentions in recent years. In many scenarios, the
loss function is defined as an integral over a high-dimensional domain. Monte-Carlo

method, together with a deep neural network, is used to overcome the curse of
dimensionality, while classical methods fail. Often, a neural network outperforms

classical numerical methods in terms of both accuracy and efficiency. In this pa-

per, we propose to use quasi-Monte Carlo sampling, instead of Monte-Carlo method
to approximate the loss function. To demonstrate the idea, we conduct numerical

experiments in the framework of deep Ritz method. For the same accuracy require-

ment, it is observed that quasi-Monte Carlo sampling reduces the size of training
data set by more than two orders of magnitude compared to that of Monte-Carlo

method. Under some assumptions, we can prove that quasi-Monte Carlo sampling

together with the deep neural network generates a convergent series with rate pro-
portional to the approximation accuracy of quasi-Monte Carlo method for numerical

integration. Numerically the fitted convergence rate is a bit smaller, but the pro-
posed approach always outperforms Monte Carlo method.
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1. Introduction

Deep neural networks (DNNs) have had great success in text classification, com-

puter vision, natural language processing and other data-driven applications [13, 16,
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21, 30, 35]. Recently, DNNs have been applied to the field of numerical analysis and

scientific computing, with the emphasis on solving high-dimensional partial differential

equations (PDEs) [11,12,17,32], which are widely used in physics and finance. Notable

examples include Schrödinger equation in the quantum many-body problem [15, 18],

Hamilton-Jacobi-Bellman equation in stochastic optimal control [10,17], and nonlinear

Black-Scholes equation for pricing financial derivatives [1,7].

Classical numerical methods, such as finite difference method [23] and finite ele-

ment method [3], share the similarity that the approximation stencil has compact sup-

port, resulting in the sparsity of stiffness matrix (or Hessian in the nonlinear case).

Advantages of these methods are obvious for low dimensional PDEs (the dimension

K ≤ 3). However, the number of unknowns grows exponentially as K increases

and classical methods run into the curse of dimensionality. In another line, spectral

method [31] uses basis functions without compact support and thus sacrifices the spar-

sity, but often has the exponential accuracy. However, the number of modes used in the

spectral method also grows exponentially as K increases. Sparse grid method [5,8,14]

mitigates the aforementioned situation to some extent (K ≤ 9 typically). Therefore,

high-dimensional PDEs are far out of the capability of classical methods.

The popularity of DNNs in scientific computing results from its ability to approxi-

mate a high-dimensional function without the curse of dimensionality. To illustrate

this, we focus on methods in which the loss function is defined as an integral over

a bounded domain in high dimensions; see the deep Ritz method [11] and the deep

Galerkin method [32] for examples. The success of DNNs relies on composition of

functions without compact support and sampling strategy for approximating the high-

dimensional integral. It is known that the choice of approximate functions in DNNs is

of particular importance. For example, in the current work, the approximate function

in one block of DNN consists of two linear transformations, two nonlinear activation

functions, and one shortcut connection. Besides, since the network architecture is

chosen a priori, the number of parameters can be independent of K or only grows

linearly as K increases. On the other hand, only a fixed number of samples (or at most

linear growth) is used to approximate the high-dimensional integral. Altogether, DNNs

can overcome the curse of dimensionality when solving high-dimensional PDEs. In [2],

the above step of numerical quadrature is viewed as approximating the expected risk

by its empirical risk using Monte Carlo (MC) method. Consequently, the full gradient

of the loss function is approximated by a finite number of samples and the stochastic

gradient descent (SGD) method is used to find the optimal set of parameters in the

network. It is shown that such a procedure converges under some assumptions.

From the perspective of numerical analysis, using N i.i.d. random points, MC me-

thod approximates an integral with O(N− 1

2 ) error [24]. It is also known that using

N carefully chosen (deterministic) points, quasi-Monte Carlo (QMC) method approxi-

mates an integral with O( (logN)K

N−1 ) error and the logarithmic factor can be removed un-

der some assumptions [9,27,28,34]. Therefore, it is natural to replace MC method by

QMC method in the community of machine learning. One example is the usage of QMC

method in variational inference and QMC method has been proved to perform better


