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Abstract. We concern with fast domain decomposition methods for solving the total

variation minimization problems in image processing. By decomposing the image
domain into non-overlapping subdomains and interfaces, we consider the primal-

dual problem on the interfaces such that the subdomain problems become inde-

pendent problems and can be solved in parallel. Suppose both the interfaces and
subdomain problems are uniformly convex, we can apply the acceleration method

to achieve an O(1/n2) convergent domain decomposition algorithm. The conver-

gence analysis is provided as well. Numerical results on image denoising, inpaint-
ing, deblurring, and segmentation are provided and comparison results with existing

methods are discussed, which not only demonstrate the advantages of our method
but also support the theoretical convergence rate.
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1. Introduction

Minimizing the total variation (TV) was first proposed by Rudin et al. [29] for image

denoising problem, and has captured wide attention due to its ability in preserving

sharp edges and discontinuities when removes noises. Let Ω be an open bounded subset

of Rn with Lipschitz continuous boundaries, f : Ω → R be a given image defined on the

domain Ω, and u : Ω → R be the latent clean image. The generalized TV minimization

model can be formulated to minimize the following energy functional:
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min
u∈BV(Ω)

{

F (u) := TV(u) +
λ

2

∫

Ω
(Au− f)2dx

}

, (1.1)

where λ ≡ const > 0 is a weight parameter used to tradeoff between the data fidelity

term and the regularization term, A is a linear and bounded operator varying with

image processing tasks, BV(Ω) is the space of functions of bounded variation on Ω,

and TV(u) stands for the total variation defined by

TV(u) = sup

{∫

Ω
udivpdx : p = (p1, p2) ∈ C1

0

(
Ω;R2

)
, ‖p‖∞ ≤ 1

}

with C1
0 (Ω,R

2) being the space of continuously differentiable vector valued functions

with compact support on Ω and

‖p‖∞ = sup
x

√
∑

i

p2i (x).

Various numerical algorithms have been studied for solving the TV minimization

problem, especially for the Rudin-Osher-Fatemi model, including the direct primal ap-

proaches such as the gradient descent method [29], fixed-point method [33], split

Bregman iteration [18], and augmented Lagrangian method [34]. Chambolle [3] re-

formulated (1.1) by the Fenchel-Rockafellar dual and solved the dual problem by the

semi-implicit gradient descent algorithm. Chambolle and Pock [4] considered the min-

max optimization problem for solving the general problems in image processing, where

the first-order primal-dual algorithm was developed for the nonlinear convex problem

with an O(1/n) convergent rate of convergence. What is more, as long as the minimiza-

tion problem is uniformly convex, e.g., the Rudin-Osher-Fatemi model, it is shown that

the O(1/n2) convergence rate can be achieved by updating the step sizes dynamically.

Other methods for solving the model (1.1) include the fast non-iterative algorithm

in [11], the primal-dual fixed-point algorithm in [9], the proximity algorithm in [27],

and general Douglas-Rachford algorithms in [12], etc.

The aforementioned methods work well on small- and medium-scale image prob-

lems, but fail to address extremely large problems in realistic CPU-time such as traffic

problems [32]. Domain decomposition methods (DDMs) [31,35] can make use of dis-

tributed memory computers by breaking down the problem into a sequence of smaller

scale subproblems and solve them in parallel. Over the past two decades, both overlap-

ping and non-overlapping DDMs have been well studied for the variational model in

image processing problems. Fornasier and Schönlieb [17] proposed a non-overlapping

DDM algorithm for total variation minimization, the convergence of which was theo-

retically guaranteed. The idea was further studied for the case of overlapping DDM

in [16]. Xu et al. [36] proposed a two-level overlapping DDM for the Rudin-Osher-

Fatemi model by directly solving the nonlinear partial differential equation. Duan and

Tai [15] developed an overlapping DDM for the Rudin-Osher-Fatemi model, where

graph cuts were used to solve the subdomain minimization problem. To avoid the dif-

ficulties in minimizing the nonsmooth and nonadditive total variation term, the dual


