
Numer. Math. Theor. Meth. Appl. Vol. 14, No. 4, pp. 1085-1109

doi: 10.4208/nmtma.OA-2020-0143 November 2021

Strong Convergence of a Fully Discrete Scheme

for Multiplicative Noise Driving SPDEs with

Non-Globally Lipschitz Continuous Coefficients

Xu Yang1 and Weidong Zhao2,∗

1 School of Mathematics, China University of Mining and Technology, Xuzhou,

Jiangsu 221116, China
2 School of Mathematics, Shandong University, Jinan, Shandong 250100,

China

Received 17 September 2020; Accepted (in revised version) 8 June 2021

Abstract. This work investigates strong convergence of numerical schemes for non-

linear multiplicative noise driving stochastic partial differential equations under
some weaker conditions imposed on the coefficients avoiding the commonly used

global Lipschitz assumption in the literature. Space-time fully discrete scheme is

proposed, which is performed by the finite element method in space and the implicit
Euler method in time. Based on some technical lemmas including regularity prop-

erties for the exact solution of the considered problem, strong convergence analysis

with sharp convergence rates for the proposed fully discrete scheme is rigorously
established.
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1. Introduction

This work is devoted to the numerical approximation of the following initial bound-

ary value problem of the Itô-type stochastic partial differential equations (SPDEs)





du(t, x)−∆u(t, x)dt = f̃
(
x, u(t, x)

)
dt

+g̃
(
x, u(t, x)

)
dW (t), x ∈ D, t ∈ (0, T ],

u(t, x) = 0, on ∂D × [0, T ],

u(0, x) = u0(x), in D × {0},

(1.1)
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where T is a fixed positive constant, D is a bounded convex domain in Rd, d = 1, 2, 3,
with polygonal boundary ∂D, ∆ is the Laplacian operator, f̃ , g̃ : D × R → R are two

appropriate regular functions, and the driving noise W is characterized by a standard

R-valued Wiener process defined on a complete probability space (Ω,F ,F,P) with nor-

mal filtration F = {Ft}0≤t≤T . The above problem (1.1) should be interpreted mathe-

matically as a stochastic integral equation and particularly when u is a strong solution

of (1.1) we have

u(t, x)−

∫ t

0
∆u(s, x)ds = u0(x) +

∫ t

0
f̃
(
x, u(s, x)

)
ds+

∫ t

0
g̃
(
x, u(s, x)

)
dW (s)

for t ∈ [0, T ] and x ∈ D, where the last integral with respect to the Wiener process is

an Itô stochastic integral. Precise descriptions on the coefficient functions f̃ and g̃, and

the initial-value function u0 will be given in Section 2.

SPDEs have been found numerous applications in various branches of applied sci-

ences, ranging from chemistry, physics and biology to engineering and economics. In

recent years the theory of stochastic partial differential equations has already had an

intensive development, see [6,8,22,30,31] and references therein. Generally, there are

basically two approaches to analyzing SPDEs: the semigroup approach and variational

approach. As far as the first approach is concerned, we refer to the monograph [8],

where the semigroup approach is extensively studied and the corresponding solution

is called mild solution. For the second approach, the equation is usually considered

in a Gelfand triplet V →֒ H →֒ V ∗ of Hilbert spaces with the space V as the domain

of the unbounded operator and V ∗ its dual. In this case variational solutions are pro-

duced [6, 21, 22, 30, 31]. The variational solutions of SPDEs are studied mainly under

the so-called coercivity and monotonicity conditions, which are commonly assumed in

the study of deterministic partial differential equations (PDEs). In this paper, we will

consider the problem in the framework of the variational approach. There are three

main reasons for this choice. One is that under some stronger assumptions, such as the

conditions of the input data u0, coercivity and monotone nonlinearity, the variational

solution can have higher order regularity [6], while the regularity of solutions will be

decreasing when using the semigroup method to deal with SPDEs [41]. The second

reason is built on the fact that the semigroup approach has a very restrictive require-

ment on the unbounded operator, which may not be applicable for some general cases,

such as the case when the unbounded operator is time-dependent. Hence by using

variational approach we are capable of handling some more general SPDEs. The third

reason is that in the framework of the variational approach, one can make good use of

the Itô formula, which plays a powerful role in our following analysis.

Since only a few and very simple SPDEs can be solved analytically, it is of great

significance to develop accurate and efficient numerical methods to solve SPDEs. And

the study of numerical approximation of SPDEs is a very active ongoing research area

and has attracted considerable attention. Particularly, in the past two decades, plenty

of works have been done on the study of numerical methods for SPDEs. Based on

the mild solution approach, one is referred to [12, 20, 27, 28, 37–39] and references


