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Abstract. A dimension reduction method based on the “Nonlinear Level set Learn-

ing” (NLL) approach is presented for the pointwise prediction of functions which

have been sparsely sampled. Leveraging geometric information provided by the
Implicit Function Theorem, the proposed algorithm effectively reduces the input di-

mension to the theoretical lower bound with minor accuracy loss, providing a one-

dimensional representation of the function which can be used for regression and
sensitivity analysis. Experiments and applications are presented which compare this

modified NLL with the original NLL and the Active Subspaces (AS) method. While
accommodating sparse input data, the proposed algorithm is shown to train quickly

and provide a much more accurate and informative reduction than either AS or the

original NLL on two example functions with high-dimensional domains, as well as
two state-dependent quantities depending on the solutions to parametric differential

equations.
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1. Introduction

It is frequently the case that scientists or engineers need to draw conclusions about

the output of a function based on limited or incomplete data. Such situations arise, for

example, when the output depends on the solution of expensive differential equations,
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or when lack of time and resources precludes the collection of sufficient high-quality

samples. When this occurs, it becomes critical to maximize the value of the limited

resources at hand, which requires informed algorithms for dimension reduction.

More specifically, let U ⊂ R
n be a bounded domain and consider the problem of

approximating a continuously differentiable scalar function f : U → R based on some

predefined samples {xs, f(xs),∇f(xs)}s∈S of the function and its gradient vector field.

Note that f may represent either a scalar quantity or some component of a vector

quantity, so that no generality is lost with this consideration. Additionally, let ρ : Rn →
R
+ be a probability density function supported on U such that f is square-integrable

with respect to ρ, i.e.

‖f‖22 :=

∫

U

f(x)2ρ(x) dx <∞.

To generate a pointwise approximation to f , it is reasonable to seek a function f̃ : U →
R which satisfies the minimization condition

f̃(x) ∈ argmin
g∈C1(U)

∥

∥f(x)− g(x)
∥

∥

2

2
. (1.1)

However, if the dimension n is large relative to the number |S| of available samples (i.e.

sparse data), training a regression model to approximate f directly becomes infeasible.

Indeed, unless the training data itself has a hidden low-dimensional structure, unsuper-

vised learning methods such as feed-forward neural networks are prone to overfitting,

leading to poor accuracy on new data as a result of inadequate generalizability. There-

fore, it is necessary to employ some kind of dimension reduction to increase the density

of the sampling data to the point where it is useful for approximating solutions to (1.1).

A prototypical example of this issue arises when studying the numerical solutions

of differential equations with limited computational budget. Let I be a multi-index,

β ∈ R
m, and consider a k-th order parameterized system of R ∈ N partial differential

equations (PDE) for the function u : Rm ×R
n → R

l,

F r

(

β,x,u,
∂|I|u

∂xI

)

= 0, 1 ≤ r ≤ R, 1 ≤ |I| ≤ k, (1.2)

which may depend on some number of initial or boundary conditions. Suppose addi-

tionally that the assignment β 7→ u(β,x) is unique, so that solutions to (1.2) are param-

eterized by the variables β. For prediction and sensitivity analysis it is often necessary

to compute the value of some functional K(u) on PDE solutions u ∈ Ck(Rm × R
n;Rl)

(e.g. temperature or total kinetic energy) which is implicitly a function of the parame-

ters β, i.e. K(β) = K(u(β,x)). On the other hand, it is usually not feasible to simulate

the (potentially expensive) system (1.2) for every parameter configuration desired, so

it is necessary to have a reasonable yet inexpensive approximation to K which can be

computed for any β in place of numerically solving (1.2). In the language of before,

this means finding K̃ satisfying

K̃(β) ∈ argmin
G:Rm→R

∥

∥K(β) − G(β)
∥

∥

2

2
.


