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Abstract. In this work, in order to capture discontinuities correctly in linear elastic
solid, augmented internal energy is defined according to the first law of thermody-

namics and Hooke’s law. The non-conservative linear elastic system is then rewrit-
ten into a conservative form with the help of an augmented total energy equation.

We find that the non-physical oscillations occur to the popular HLL and HLLC ap-

proximate Riemann solvers when directly applied to simulate the augmented linear
elastic solid. We analyze the intrinsic reason by defining a discrepancy factor which

can be used to estimate the difference of the total stress across a contact discontinu-

ity, where it is physically required to be continuous. We discover that non-physical
oscillations inevitably appear in the vicinity of the contact discontinuity if this fac-

tor is away from zero for an approximate Riemann problem solver. In order to
overcome this difficulty, we propose an approximate Riemann solver based on the

linearized double-shock technique. Theoretical analysis and numerical results show

that in comparison to the HLL and HLLC approximate Riemann solvers, the present
linearized double-shock Riemann solver can eliminate the non-physical oscillations

effectively.
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1. Introduction

In recent decades, various elastic and plastic models, such as hyper-elastic plastic

models and hypo-elastic plastic models, have been developed for simulating mechanical

behaviors of solid materials. To better understand the performance of those theoretical

models, researchers [9–11,20,21] have put much effort into developing exact solutions

concerning various models. Those exact solutions are precious and have played an

important role in constructing and verifying numerical solvers in the simulation of
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compressible solids. In this work, we focus on developing numerical method for linear

elastic solid and verifying it with exact solutions.

A hyper-elastic plastic model usually satisfies the second law of thermodynam-

ics and the corresponding governing system can be written in a conservative form.

Garaizar [11] proposed an exact iterative Riemann problem solver for the isotropic

hyper-elastic model. Based on the above work, LeFloch and Olsson [15] presented an

approximate Riemann solver, which only utilized features of shock waves. Gavrilyuk

et al. [12] constructed an approximate Riemann solver for the non-conservative non-

linear elastic system. Miller [20] presented an exact iterative Riemann solver for the

general hyper-elastic system. Barton et al. [1] presented another iterative method for

finding the exact solution to the Riemann problem with non-linear elasticity. Trangen-

stein et al. [22] constructed an approximate Riemann solver for considering the inter-

action of elastic waves at cell boundaries.

Compared with hyper-elastic plastic models, a hypo-elastic plastic model might be

inconsistent with thermodynamics strictly and often results in a non-conservation gov-

erning system. However, such a model bears the advantages of reproducing experi-

mental data accurately (especially for metal materials), introducing plastic deforma-

tion naturally, and dealing with complex multi-dimensional boundary problems easily.

For a hypo-elastic plastic model, an equation of state (EOS) or Hooke’s law is usually

applied in the elastic region, the EOS commonly includes the Murnagham equation of

state and the Mie-Gruüneisen equation of state. The former is suitable for simulating

the solid state at high temperature and high pressure. Tang et al. [21] put forward an

exact Riemann solver for the hydro-elastoplastic solid. For the latter, Maire et al. [19]

proposed a nodal-based Riemann solver in the lagrangian coordinate. Chen et al. [2]

proposed an approximate iterative solver for elastic-plastic Riemann problems. Cheng

and colleges [3, 4] developed a two-rarefaction Riemann solver (TRRSE) and Harten-

Lax-van Leer-contact (HLLC) approximate Riemann solvers for elastic waves. In their

work [3], they found the popular HLLC approximate Riemann solver suffered numeri-

cal oscillations. Later, they proposed a multi-material HLLC with both elastic and plastic

(MHLLCEP) approximate Riemann solvers [17] to fix the above difficulty by enforcing

the continuity of total stress across the contact discontinuity. Recently, Li et al. [16] pre-

sented another HLLC-type approximate Riemann solver, where the elastic-plastic shear

wave was considered, to overcome the above-mentioned problem.

In practice, for metal materials under not very high temperature and pressure,

Hooke’s law is more appropriate in reflecting the mechanical behavior of metals. This

usually leads to linear elastic modeling to the solid. Wilkins [23] extensively investi-

gated the linear elastic model, in which Hooke’s law was applied to model the elastic

region, and perfect plasticity was adopted to treat the plastic region with an equation

of state. As a result, the governing system is non-conservative in the elastic region,

while it is conservative in the plastic region. When there is a shock wave in the elastic

region, a non-conservation system might lead to incorrect numerical results as found

by Gavrilyuk et al. [12]. Barton et al. [1] and Trangenstein et al. [22] also pointed out

that the non-conservative system of an elastic model produced non-physical character-


