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Abstract. A family of conforming mixed finite elements with mass lumping on tri-

angular grids are presented for linear elasticity. The stress field is approximated

by symmetric H(div) − Pk (k ≥ 3) polynomial tensors enriched with higher order
bubbles so as to allow mass lumping, and the displacement field is approximated by

C−1 − Pk−1 polynomial vectors enriched with higher order terms. For both the pro-

posed mixed elements and their mass lumping schemes, optimal error estimates are
derived for the stress and displacement in H(div) norm and L2 norm, respectively.

Numerical results confirm the theoretical analysis.
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1. Introduction

Let Ω ⊂ R
2 be a polygonal region with boundary ∂Ω. We consider the following

mixed variational system of linear elasticity based on the Helligner-Reissner principle:

Find (σ, u) ∈ Σ× V := H(div,Ω;S)× L2(Ω;R2), such that

{
(Aσ, τ) + (div τ, u) = 0, ∀τ ∈ Σ,

−(div σ, v) = (f, v), ∀v ∈ V.
(1.1)

Here σ : Ω → S := R
2×2
sym denotes the symmetric 2× 2 stress tensor field, u : Ω → R

2 the

displacement field, and Aσ ∈ S the compliance tensor with

Aσ :=
1

2µ

(
σ −

λ

2µ+ 2λ
tr(σ)I

)
, (1.2)

where λ > 0, µ > 0 are the Lamé coefficients, tr(σ) the trace of σ, I the 2 × 2 iden-
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tity matrix, and f the body force. H(div,Ω;S) denotes the space of square-integrable

symmetric matrix fields with square-integrable divergence, and L2(Ω;R2) the space of

square-integrable vector fields. The L2 inner products on vector and matrix fields are

given by

(v,w) :=

∫

Ω
v · wdx =

∫

Ω

2∑

i=1

viwidx, v = (v1, v2), w = (w1, w2) ∈ V,

(σ, τ) :=

∫

Ω
σ : τdx =

∫

Ω

∑

1≤i,j≤2

σijτijdx, σ = (σij), τ = (τij) ∈ Σ,

respectively.

According to the standard theory of mixed methods [11], a mixed finite element

discretization of the weak problem (1.1) requires the pair of stress and displacement

approximations to satisfy two stability conditions, i.e. a coercivity condition and an

inf-sup condition. These stability constraints make it challengeable to construct stable

finite element pairs with symmetric stresses. In this field, we refer to [1–7,12,20–26,31,

32] for some conforming or nonconforming mixed methods for elasticity. In particular,

Hu and Zhang [25, 26] designed a family of conforming symmetric mixed finite ele-

ments with optimal convergence orders for linear elasticity on triangular and tetrahe-

dral grids. Later Hu [21] extended the elements to simplicial grids in R
n for any positive

integer n. In these elements, the stress is approximated by symmetric H(div,Ω;S)−Pk
polynomial tensors and the displacement is approximated by L2(Ω;Rn)−Pk−1 polyno-

mial vectors for k ≥ n+ 1.

However, for a mixed finite element discretization based on (1.1), a computational

drawback is the need to solve an algebraic system of saddle point type like

(
A B

T

−B O

)(
X1

X2

)
=

(
O

F

)
, (1.3)

where A is a symmetric and positive definite (SPD) matrix corresponding to the term

(Aσ, τ) in (1.1), and X1 and X2 are the vectors of unknowns for the discrete stress

and displacement approximations, respectively. One possible approach to resolve this

difficulty is to apply “mass lumping” on (Aσ, τ) so as to get a diagonal or block-diagonal

matrix approximation, Ã, of the ‘mass matrix’ A. Replacing A with Ã in the discrete

system (1.3), we obtain

X1 = −Ã
−1

B
TX2

and then

BÃ
−1

B
TX2 = F. (1.4)

Notice that Ã is diagonal or block-diagonal, so is Ã
−1. This means that the Schur

complement BÃ
−1

B
T is SPD. As a result, by mass lumping the saddle point system

(1.3) is reduced to the SPD system (1.4), which can be solved efficiently by many fast

algorithms.


