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Abstract. At present, deep learning based methods are being employed to resolve
the computational challenges of high-dimensional partial differential equations

(PDEs). But the computation of the high order derivatives of neural networks is
costly, and high order derivatives lack robustness for training purposes. We propose

a novel approach to solving PDEs with high order derivatives by simultaneously ap-

proximating the function value and derivatives. We introduce intermediate variables
to rewrite the PDEs into a system of low order differential equations as what is done

in the local discontinuous Galerkin method. The intermediate variables and the so-

lutions to the PDEs are simultaneously approximated by a multi-output deep neural
network. By taking the residual of the system as a loss function, we can optimize

the network parameters to approximate the solution. The whole process relies on
low order derivatives. Numerous numerical examples are carried out to demon-

strate that our local deep learning is efficient, robust, flexible, and is particularly

well-suited for high-dimensional PDEs with high order derivatives.
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1. Introduction

Partial differential equations (PDEs) play a significant role in the fields of physics,

chemistry, biology, engineering, finance, and others. Classical numerical methods focus
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on designing efficient, accurate, and stable numerical schemes. Within the context of

high-dimensional problems, however, the curse of dimensionality renders classical nu-

merical methods impractical. As a result, many mathematicians have introduced neural

networks into PDEs precisely because multilayer feedforward networks are proven to

be universal approximators for the PDEs [15, 16]. More specifically, once the network

structure is determined, any order derivatives of the neural network can be obtained

analytically. Coupled with the automatic differentiation technique, neural networks

can be applied to solve PDEs [2]. Depending upon different purposes, neural networks

can be used to approximate the solution function, represent the solution solver, and

even invert the equations.

In this paper, we consider the deep learning method as a means to solve the follow-

ing k-th order initial boundary value problem (IBVP):











ut = L(u), x ∈ Ω, t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ Ω,

Bu = g, x ∈ ∂Ω, t ∈ [0, T ],

(1.1)

where Ω ⊂ R
d, d ∈ N+, L(u) = F (x, t, u,Du, · · · ,Dku), F and g are linear or nonlinear

functions, B is the boundary condition operator, and the p-th order derivative operator

Dp consists of

∂α1

x1
∂α2

x2
· · · ∂αd

xd
u with

∑

αi = p, αi ∈ N.

The neural network function ϕ(x, t; θ) : Rd+1 ×ΘM 7→ R
m is defined as follows:

ϕ(x, t; θ) = Nout ◦ NL ◦ · · · ◦ N1 ◦ Nin(x, t),

Nin(x, t) = σin(αx+ βt+ b), α ∈ R
n×d, β, b ∈ R

n,

Nout(y) = σout(γy + c), γ ∈ R
m×n, c ∈ R

m,

(1.2)

where d is the dimension of x, m is the dimension of the output, n is the width of the

hidden layers, L is the number of the hidden layers (i.e., the network’s depth) and Ni :
R
n 7→ R

n is the structure of the hidden layers. σin usually is the same nonpolynomial

activation function as the hidden layers and σout is set as an equivalent function in

most cases, i.e., σout(x) = x. For specific examples, a proper output transformation

σout should be determined. Our goal is to find a suitable neural network ϕ(x, t; θ) to

approximate a solution u(x, t) to the problem (1.1).

[7] gives an overview of the progress that has been made in linking computational

mathematics and machine learning. In most of existing literatures, the loss function is

determined by either the PDEs or an equivalent formulation. For instance, the parabolic

PDE is reformulated as a backward stochastic differential equation in [10, 11, 31],

where the loss function is given by the solution of the backward stochastic differen-

tial equation, and the training process is shown to be a deep reinforcement learning

process. In [28,29], the solution is approximated by a neural network. The proposal of

a mesh-free algorithm makes high-dimensional calculations feasible. [21,30] provides


