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Abstract. In this paper we propose and analyze a backward differentiation formula

(BDF) type numerical scheme for the Cahn-Hilliard equation with third order tem-

poral accuracy. The Fourier pseudo-spectral method is used to discretize space. The
surface diffusion and the nonlinear chemical potential terms are treated implicitly,

while the expansive term is approximated by a third order explicit extrapolation for-
mula for the sake of solvability. In addition, a third order accurate Douglas-Dupont

regularization term, in the form of −A0∆t2∆N (φn+1−φn), is added in the numerical

scheme. In particular, the energy stability is carefully derived in a modified version,
so that a uniform bound for the original energy functional is available, and a theo-

retical justification of the coefficient A becomes available. As a result of this energy

stability analysis, a uniform-in-time L6
N

bound of the numerical solution is obtained.
And also, the optimal rate convergence analysis and error estimate are provided, in

the L∞

∆t
(0, T ;L2

N
) ∩ L2

∆t
(0, T ;H2

h
) norm, with the help of the L6

N
bound for the nu-

merical solution. A few numerical simulation results are presented to demonstrate

the efficiency of the numerical scheme and the third order convergence.
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1. Introduction

The Allen-Cahn (AC) [1] (non-conserved dynamics) and Cahn-Hilliard (CH) [4]
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(conserved dynamics) equations, are some of the best known gradient flow models.

They result from the same or similar models for the free energy density and only differ

in whether they are conserved or non-conserved flows. The CH equation model spin-

odal decomposition and phase separation in a binary alloy or fluid. Over a bounded

domain Ω ⊂ R
d (with d = 2 or d = 3), the Cahn-Hilliard energy functional is given

by [4]

E(φ) =

∫

Ω

(
1

4
φ4 − 1

2
φ2 +

1

4
+

ε2

2
|∇φ|2

)
dx (1.1)

for any φ ∈ H1(Ω), where ε is a constant associated with the interface width. The CH

equation is precisely the H−1 (conserved) gradient flow of the energy functional (1.1)

φt = ∆µ, µ := δφE = φ3 − φ− ε2∆φ. (1.2)

Variations of the model may use non-constant mobilities or other free energy densities.

For simplicity of presentation, we assume periodic boundary condition in this article,

although an extension to other type boundary conditions, such as the homogeneous

Neumann one, will be straightforward. Due to the gradient structure of (1.2), the

following energy dissipation law holds:

d

dt
E
(
u(t)

)
= −

∫

Ω
|∇w|2dx.

Furthermore, the equation is mass conservative,
∫
Ω ∂tu dx = 0, which follows from the

conservative structure of the equation together with the periodic Neumann boundary

conditions for µ. This property can be re-expressed as (u( · , t), 1) = (u0, 1), for all t ≥ 0.

The Cahn-Hilliard equation is a very important model in mathematical physics. It

is often paired with equations that describe important physical behavior of a given

physical system, typically through nonlinear coupling terms. Examples of such coupled

models include the Cahn-Hilliard-Navier-Stokes (CHNS) equation for two-phase, im-

miscible flow; the Cahn-Larché model of binary solid state diffusion for elastic misfit;

the Cahn-Hilliard-Hele-Shaw (CHHS) equation for spinodal decomposition of a binary

fluid in a Hele-Shaw cell, etc. The scientific challenge of the CH equation model is

obvious, due to its fourth-order, nonlinear parabolic-type nature.

The energy stability of a numerical scheme has been a very important issue, since

it plays an essential role in the accuracy of long time numerical simulation. There have

been extensive existing numerical works with energy stability, in particular for first or-

der and second order accurate (in time) schemes. Among the second order energy

stable numerical schemes, the temporal discretization has been focused on either the

Crank-Nicolson approximation [7, 17–20, 26–30] or the second order backward differ-

entiation formula (BDF) one [13, 47]. Other than these numerical algorithms for the

Cahn-Hilliard model, which preserve the energy dissipation in the original phase vari-

able, a few other numerical works have been reported for the reformulated physical

system with an introduction of certain auxiliary variables, such as the scalar auxiliary


