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Abstract. We propose several immersed interface hybridized difference methods
(IHDMs), combined with the Crank-Nicolson time-stepping scheme, for parabolic

interface problems. The IHDM is the same as the hybrid difference method away

from the interface cells, but the finite difference operators on the interface cells are
modified to maintain the same accuracy throughout the entire domain. For the modi-

fication process, we consider virtual extensions of two sub-solutions in the interface

cells in such a way that they satisfy certain jump equations between them. We
propose several different sets of jump equations and their resulting discrete methods

for one- and two-dimensional problems. Some numerical results are presented to
demonstrate the accuracy and robustness of the proposed methods.
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1. Introduction

Interface problems are mathematical models using ordinary or partial differential

equations that have discontinuous coefficients or singular source functions. They arise

in a variety of disciplines, including mathematical biology, material sciences, fluid me-

chanics, and medicine. Some interesting applications include heart models [24,26], lo-

comotion of aquatic animals [6,7], blood cell motion [31], biofilm formation [5,14,28],

crystal growth [15], glacier prediction [19], electromigration of voids [20], and many

more.

In general, the solutions to interface problems are not smooth or not even contin-

uous at the interface. Therefore, desired numerical methods should be able to cap-
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ture such features of analytical solutions. Standard finite element, finite difference,

and finite volume methods tend to lose accuracy near the interface unless they use

interface-fitted meshes to resolve the low-regularity solution around the interface. In

practice, however, structured meshes such as Cartesian grids that are independent of

the interface are preferable. The advantage of using non-interface-fitted meshes is more

prominent when the interface is geometrically complicated, or the dynamic simulation

involves a moving interface, which requires repeated mesh generations.

In response to this need, various numerical methods have been developed based

on non-interface-fitted meshes in the past decades, including immersed boundary (IB)

method [24,25], immersed interface method (IIM) [8,16–18], extended finite element

methods (XFEMs) [1, 2], correction function method (CFM) [21, 22], and kernel-free

boundary integral method [29, 30]. In addition to these methods, another method

called the Immersed Interface Hybridized Difference Method (IHDM) was introduced

by the author Jeon to solve elliptic interface problems on non-interface-fitted meshes

[11]. The IHDM is closely related to the IIM and CFM, whose central idea is to mod-

ify the finite difference operator in a small region enclosing the interface to achieve

higher-order global accuracy. In the IIM, the modified finite difference coefficients and

correction terms are determined by the method of undetermined coefficients with a cri-

terion to minimize the local truncation error. On the other hand, the CFM is based on

the so-called correction function, which is defined as a solution of a partial differential

equation (PDE) in the vicinity of the interface, paired with the given jump conditions

at the interface. Once this PDE is solved by a minimization technique, the correction

function is used to complete the finite difference discretization. As far as the IHDM is

concerned, it modifies the finite difference operator near the interface after solving a

PDE problem just like the CFM does, but the IHDM is different from the IIM and CFM

in several aspects, as will be elaborated below.

The IHDM is based on the Hybrid Difference Method (HDM), a generalized finite

difference method, which was first introduced by Jeon to study Poisson and Stokes

equations [9] and further studied by him and his coauthors for other problems [10,12,

13]. In the HDM framework, the numerical discretization procedure resembles that of

the Hybridized Discontinuous Galerkin (HDG) method [3,4,23,27], in which the local

problems from discretizing the governing equation in local cells are coupled through

transmission conditions at the intercell boundary nodes. Therefore, the HDM is locally

conservative, is amenable to static condensation, and can lend itself well to efficient

solvers. Moreover, the extension of a low-order HDM to any arbitrarily high-order

method is straightforward.

The IHDM is the same as the standard HDM away from the interface, but the fi-

nite difference operators are corrected on the cells containing the interface, which are

called the interface cells. The derivation of the finite difference operators on the in-

terface cells is based on the assumption that the solution of the interface problem is

composed of smooth sub-solutions defined in the subdomains divided by the interface,

and each sub-solution can be extended to an adjacent subdomain within a small neigh-

borhood of the interface. In particular, these extended sub-solutions are supposed to


