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Abstract. In this paper, we study the numerical solution of the time-fractional tele-
graph equation on the unbounded domain. We first introduce the artificial bound-

aries Γ± to get a finite computational domain. On the artificial boundaries Γ±,
we use the Laplace transform to construct the exact artificial boundary conditions

(ABCs) to reduce the original problem to an initial-boundary value problem on

a bounded domain. In addition, we propose a finite difference scheme based on the
L1−2 formule for the Caputo fractional derivative in time direction and the central

difference scheme for the spatial directional derivative to solve the reduced problem.

In order to reduce the effect of unsmoothness of the solution at the initial moment,
we use a fine mesh and low-order interpolation to discretize the solution near t = 0.

Finally, some numerical results show the efficiency and reliability of the ABCs and
validate our theoretical results.
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1. Introduction

In this paper, we consider the following time-fractional telegraph equation on the

unbounded domain Ω = R× [0, T ]:

C
0 D1+α

t u(x, t) + C
0 Dβ

t u(x, t) = uxx(x, t) + f(x, t), (x, t) ∈ Ω, (1.1a)
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u(x, 0) = φ(x), x ∈ R, (1.1b)

ut(x, 0) = ψ(x), x ∈ R, (1.1c)

|u(x, t)| → 0, |x| → ∞ (1.1d)

with the parameters 0 < α, β < 1. Here, the initial values φ(x), ψ(x) ∈ C∞
0 (R) and the

source term f(x, t) ∈ C1
−1([0, T ], C

∞
0 (R)), that is, there is a real number p > −1 such

that

f(x, t) = tpf1(x, t),

where f1(x, t) ∈ C1([0, T ], C∞
0 (R)). Besides, C

0 Dn+ξ
t denotes the Caputo fractional time

derivative of order n+ ξ,

C
0 Dn+ξ

t u(t) =
t−ξ

Γ(1− ξ)
∗ dn+1

dtn+1
u(t),

where ‘∗’ denotes the convolution with respect to t

f(t) ∗ g(t) =
∫ t

0
f(s)g(t− s)ds.

The time-fractional telegraph equations (1.1) can simulate the heat conduction in

rigid conductors [27] or in porcine muscle and blood [18]. The heat conduction process

can be described by the energy balance equation

ρc
∂

∂t
T (x, t) = − ∂

∂x
q(x, t)

with the heat flux q(x, t) which meets the following fractional Cattaneo heat conduction

law:

τ0
C
0 D1−β

(

C
0 Dα

t q(x, t)
)

+ q(x, t) = −λ0 C
0 D1−β

(

∂

∂x
T (x, t)

)

, (1.2)

where τ0 and λ0 respectively denote the generalized relation time (measured in s1+α−β)

and the generalized thermal conductivity (measured in J
Kmsβ

). Actually, β = 1 leads to

the fractional Cattaneo constitutive equation

τ0
C
0 Dα

t q(x, t) + q(x, t) = −λ0
∂

∂x
T (x, t). (1.3)

If α = 0, we can get the Fourier heat conduction law, which describes the heat conduc-

tion process under normal conditions; and while α = 1, it is Cattaneo’s heat conduction

law, which can describe the heat conduction process in the rapidly changing region.

The fractional Cattaneo constitutive equation (1.3) is a generalization of the Catta-

neo’s heat conduction law, which takes into account the effect of the change history of

heat flux, while Cattaneo’s heat conduction law (1.2) adds the effect of the tempera-

ture gradient’s change history, thus can describe more complex heat transfer processes.


