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Abstract. Time-dependent fractional partial differential equations typically require
huge amounts of memory and computational time, especially for long-time integra-

tion, which taxes computational resources heavily for high-dimensional problems.

Here, we first analyze existing numerical methods of sum-of-exponentials for ap-
proximating the kernel function in constant-order fractional operators, and iden-

tify the current pitfalls of such methods. In order to overcome the pitfalls, an im-
proved sum-of-exponentials is developed and verified. We also present several sum-

of-exponentials for the approximation of the kernel function in variable-order frac-

tional operators. Subsequently, based on the sum-of-exponentials, we propose a uni-
fied framework for fast time-stepping methods for fractional integral and derivative

operators of constant and variable orders. We test the fast method based on several

benchmark problems, including fractional initial value problems, the time-fractional
Allen-Cahn equation in two and three spatial dimensions, and the Schrödinger equa-

tion with nonreflecting boundary conditions, demonstrating the efficiency and ro-

bustness of the proposed method. The results show that the present fast method
significantly reduces the storage and computational cost especially for long-time in-

tegration problems.
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1. Introduction

Fractional calculus has been a powerful tool to model physical processes involving
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historical memory and global correlation and thus has led to successful applications

in the fields of physics, mechanics, and biology [3, 5, 30, 31, 37, 44]. For example, the

fractional integral and derivative of constant orders have been successfully applied to

describe the dynamical process in complex systems [27, 28]. Apart from the constant-

order fractional calculus, many studies have found that the memory and nonlocality of

complex physical systems may change with time, space or other conditions and thus the

fractional order is modelled by a function depending on time and/or space. Readers

are referred to [16, 23, 32] and the comprehensive review papers [9, 29, 35] for works

on variable-order fractional calculus and its applications.

Mathematical models using constant/variable-order fractional calculus are usually

formulated as fractional differential equations (FDEs), including time, space, and time-

space FDEs. It is difficult to obtain analytical solutions of complex FDEs, especially

for nonlinear fractional partial differential equations (FPDEs). In this paper, we fo-

cus on numerical simulation of time-fractional equations, including both constant and

variable-order fractional cases. One of challenges of numerically solving FDEs is rooted

in long time integration, which leads to expensive computational cost and high mem-

ory requirements. To tackle this challenge, some fast memory-saving time-stepping

methods have been developed for discretizing the following convolution:

kα ∗ u(t) =
∫ t

0
kα(t− s)u(s)ds, kα(t) =

tα−1

Γ (α)
. (1.1)

For α ≥ 0, (1.1) is the Riemann-Liouville (RL) fractional integral of order α. For α < 0,

the integral (1.1) is interpreted in terms of the principal value, which is equivalent to

the RL fractional derivative of order −α [33], see details in Appendix A.

The aim of this paper is to develop the unified memory-saving fast time-stepping

methods for discretizing the fractional integral and derivative operators defined in

terms of (1.1). One of the key steps of the current fast method is to look for a suit-

able sum-of-exponentials to approximate the kernel function kα(t) with the desired

accuracy.

A widely used approach is to express the kernel function by its inverse Laplace

transform as a contour integral

kα(t) =
1

2πi

∫

C
L[kα](λ)eλtdλ =

1

2πi

∫

C
λ−αeλtdλ, i2 = −1. (1.2)

By choosing a suitable contour C, the integral (1.2) is discretized by the famous ex-

ponentially convergent trapezoidal/mid-point rule [39] that leads to the desired sum-

of-exponentials as
∑
wje

λjt. The popularly used contours include the Talbot contour,

the parabolic contour, and the hyperbolic contour [10, 21, 22, 24, 40, 43, 46]. In [2, 3],

the Laplace transform of the kernel function is approximated by a rational approxima-

tion, which leads to the desired sum-of-exponentials. By choosing a special contour,

the contour integral (1.2) can be further transformed into an integral on the half line

kα(t) =
sin(απ)

π

∫ ∞

0
λ−αe−tλdλ, α < 1. (1.3)


