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Abstract. We make the split of the integral fractional Laplacian as

(−∆)su = (−∆)(−∆)s−1u,

where s ∈ (0, 1
2
) ∪ (1

2
, 1). Based on this splitting, we respectively discretize the one-

and two-dimensional integral fractional Laplacian with the inhomogeneous Dirichlet

boundary condition and give the corresponding truncation errors with the help of the
interpolation estimate. Moreover, the suitable corrections are proposed to guarantee

the convergence in solving the inhomogeneous fractional Dirichlet problem and an

O(h1+α−2s) convergence rate is obtained when the solution u ∈ C1,α(Ω̄δ
n), where n

is the dimension of the space, α ∈ (max(0, 2s− 1), 1], δ is a fixed positive constant,

and h denotes mesh size. Finally, the performed numerical experiments confirm the

theoretical results.
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1. Introduction

Fractional Laplacian is of wide interest to both pure and applied mathematicians,

and also has extensive applications in physical and engineering community [7, 19].

Based on the splitting of the integral fractional Laplacian, we provide the finite differ-

ence approximations for the one- and two-dimensional cases of the operator. Then the
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approximations are used to numerically solve the inhomogeneous fractional Dirichlet

problem, i.e.,
{

(−∆)su(x) = f(x) in Ωn,

u(x) = g(x) in Ωc
n,

(1.1)

where Ωn ⊂ R
n (n = 1, 2) is a bounded domain and Ωc

n = R
n\Ωn denotes the comple-

ment of Ωn; g(x) = 0 in Ωn, g(x) ∈ L∞(Rn), and supp g(x) is bounded; (−∆)su(x) is

the integral fractional Laplacian, which can be defined by [1,7]

(−∆)su(x) = cn,sP.V.

∫

Rn

u(x)− u(y)

|x− y|n+2s
dy (1.2)

with

cn,s =
22ssΓ(n2 + s)

π
n
2 Γ(1− s)

,

and s ∈ (0, 12)∪ (12 , 1). And the Fourier transform of (−∆)su(x) can be written as [1,7]

F
(

(−∆)su(x)
)

(ξ) = |ξ|2sF(u), (1.3)

where F stands for the Fourier transform.

Lévy process is one of the most commonly used models for describing anomalous

diffusion phenomena [3, 22], especially α-stable Lévy process. Fractional Laplacian is

introduced as the infinitesimal generator of α-stable Lévy process [7,12]. Since the sin-

gularity and non-locality, numerical approximation of fractional Laplacian is still a chal-

lenging topic. In the past few decades, finite difference method has been widely used to

approximate fractional derivatives [2,6,9,10,12–18,21,23,25]. Among them, [15–18]

discretize time fractional Caputo derivative by L1 method and convolution quadra-

ture method; [6, 23] provide weighted and shifted Grünwald difference method to

discretize fractional Riesz derivative; as for fractional Laplacian, [9,10,12,13] propose

the finite difference scheme for solving d-dimensional (d = 1, 2, 3) fractional Laplace

equation with homogeneous Dirichlet boundary condition; moreover, the finite differ-

ence schemes provided in [21, 25] for tempered fractional Laplacian with λ = 0 still

apply to fractional Laplacian.

Different from the previous finite difference scheme for fractional Laplacian, we

split it into the product of (−∆) and (−∆)s−1 according to its Fourier transform form,

where −∆ denotes the classical Laplace operator, and (−∆)s−1 (the exponent s−1 < 0)

is a non-local operator without hyper-singularity (for the detailed definition, see (2.3)).

Then we use the Lagrange interpolation to discretize (−∆)s−1 and the finite difference

to −∆ for one- and two-dimensional cases, respectively. Moreover, some corrections are

made to ensure the convergence when using our discretization to solve Eq. (1.1). Com-

pared with the discretizations in [9,10], our scheme can deal with the inhomogeneous

fractional Dirichlet problem more easily and accurately. Different from the discretiza-

tions proposed in [21, 25], the current discretization can produce a Toeplitz matrix in

one-dimensional case and a block-Toeplitz-Toeplitz-block for two-dimensional case; so


