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Abstract. Orthogonal matching pursuit (OMP for short) algorithm is a popular

method of sparse signal recovery in compressed sensing. This paper applies OMP
to the sparse polynomial reconstruction problem. Distinguishing from classical re-

search methods using mutual coherence or restricted isometry property of the mea-

surement matrix, the recovery guarantee and the success probability of OMP are
obtained directly by the greedy selection ratio and the probability theory. The re-

sults show that the failure probability of OMP given in this paper is exponential small

with respect to the number of sampling points. In addition, the recovery guarantee
of OMP obtained through classical methods is lager than that of ℓ1-minimization

whatever the sparsity of sparse polynomials is, while the recovery guarantee given
in this paper is roughly the same as that of ℓ1-minimization when the sparsity is less

than 93. Finally, the numerical experiments verify the availability of the theoretical

results.
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1. Introduction

The reconstruction of sparse polynomials is a popular research topic in the field of

approximation theory in recent years [3,29]. Suppose that g(x) is in the form of

g(x) =
∑

j∈Λ
cjφj(x),
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where {φj(x)}j∈Λ is a set of basis functions defined on Ω ⊂ C
d, and Λ is an index set

with |Λ| = n, where n can be finite or infinite, | · | represents the number of elements

in the set. Let the vector c = [c1, . . . , cn]
⊤ ∈ C

n be the coefficient vector composed of

coefficients of g(x). If the coefficient vector c has at most s elements that are not 0, here

1 ≤ s ≪ n, the polynomial g(x) is called an s-sparse polynomial, and s is called the

sparsity of the sparse polynomial g(x) and the sparse vector c. Therefore, the problem

of reconstructing the sparse polynomial g(x) can be transformed into reconstructing the

sparse vector c. In this paper, we study the recovery problem when the dimension d =
1, n is finite and the basis functions {φj(x)}j∈Λ is a uniformly bounded orthonormal

system.

1.1. Introduction to compressed sensing

In recent years, compressed sensing has been developed rapidly [1, 9, 26, 28]. Its

main idea is to use nonlinear optimization to recover a sparse signal by as few obser-

vations as possible. The original model for sparse signal recovery is

min
c∈Cn

‖c‖0 s.t. Φc = b, (1.1)

where ‖c‖0 represents the number of non-zero elements in the vector c,Φ ∈ C
m×n

is a measurement matrix, b = [b1, . . . , bm]
⊤ ∈ C

m×1 is an observation vector. Un-

fortunately, the model (1.1) is an NP-hard problem. Therefore, many scholars have

considered whether there are other ways to recover the sparse signal c [12]. One way

is to convert (1.1) into

min
c∈Cn

‖c‖1 s.t. Φc = b, (1.2)

where ‖c‖1 =
∑

j∈Λ |cj |. It is proved that when the measurement matrix Φ satisfies the

null space property, (1.1) and (1.2) are equivalent [11]. Many iterative algorithms are

designed to solve (1.2), such as Bregman iterative algorithm [16] and ADM (alternating

direction method) [31]. Another way is greedy algorithm [17, 23]. If we know in

advance that the sparsity of the signal to be reconstructed is s, then we convert the

model (1.1) into the following ℓ2-norm model with inequality constraints:

min
c∈Cn

‖Φc− b‖2 s.t. ‖c‖0 ≤ s. (1.3)

At present, many researchers have given a lot of greedy algorithms to solve model

(1.3) [5, 6, 8, 23, 25, 32], among which orthogonal matching pursuit algorithm (OMP

for short) is the most important method [17].

1.2. Sparse polynomial reconstruction via ℓ1-minimization

The problem of using ℓ1-minimization to reconstruct sparse polynomials has been

considered for many years [19,21,29,30], of which the sampling method and recovery

guarantee are the most two popular topics. In 2006, Candes et al. [1,2] chose sampling


