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Abstract. Compact higher-order (HO) schemes for a new finite difference method,

referred to as the Cartesian cut-stencil FD method, for the numerical solution of
the convection-diffusion equation in complex shaped domains have been addressed

in this paper. The Cartesian cut-stencil FD method, which employs 1-D quadratic

transformation functions to map a non-uniform (uncut or cut) physical stencil to
a uniform computational stencil, can be combined with compact HO Padé-Hermitian

formulations to produce HO cut-stencil schemes. The modified partial differential
equation technique is used to develop formulas for the local truncation error for the

cut-stencil HO formulations. The effect of various HO approximations for Neumann

boundary conditions on the solution accuracy and global order of convergence are
discussed. The numerical results for second-order and compact HO formulations of

the Cartesian cut-stencil FD method have been compared for test problems using the

method of manufactured solutions.

AMS subject classifications: 65N06, 35Q35

Key words: Cartesian cut-stencil finite difference method, compact higher-order formulation,
irregular domain, Neumann boundary conditions, local truncation error.

1. Introduction

In finite difference methods, the truncation (or discretization) error TE is a mea-
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sure of the accuracy of the approximate numerical solution of a partial differential

equation (PDE). The TE determines the order of accuracy (p) by expressing TE ≈ hp,

where h denotes the grid step size [19]. Higher-order (higher than second-order)

approximations, formulations and related algorithms have gained intense interest in

different application areas of science and engineering such as compressible and incom-

pressible flow, computational aeroacoustics, geodynamic simulations and aerospace

[11,23,29,38,39,52].

Higher-order (HO) schemes have also been implemented in conjunction with the

finite volume method (FVM), mostly employing wider stencils to calculate the fluxes

at the cell interfaces. However, HO schemes are more suitable and straightforward

for structured grids [5], in contrast to the main advantage of FVM, which can handle

complex domains and unstructured meshes. Furthermore, although some higher-order

FVM-based formulations have been constructed for unstructured grids [4,21,49], they

are not exempt from difficulty because of very complicated algorithms and implemen-

tation procedures. Meanwhile, the total variation diminishing (TVD) method proposed

by Harten [20] shows first-order accurate behavior that suppresses numerical oscilla-

tions. The higher-order accurate essentially non-oscillatory (ENO) scheme was devel-

oped by Harten et al. [22] to overcome the issue of TVD schemes that require smooth

computational grids. Again, implementation of these schemes may be difficult, if not

impossible, to achieve for complex domains [49]. Other HO accurate schemes for ar-

bitrary domains, such as the high-order k-exact finite volume scheme [4], are known

to suffer inefficient use of computational memory [49]. There are also many numer-

ical studies devoted to the construction of various techniques for higher-order finite

element methods (FEM) [34]. Generally speaking, in FEM, higher-order refers to the

order of the elements (i.e., degree of the polynomial approximation of the integrand)

used in the formulation.

The finite difference method (FDM), which is based on Taylor series approxima-

tion for the derivatives in the governing equations, is regarded by most researchers as

the simplest numerical discretization method. However, traditionally, FDM can be di-

rectly applied only on rectangular shaped domains in which grid points can be equally

spaced [33]. FDM encounters serious difficulties for complex domains, particularly

at nodes near boundaries of the physical domain [25]. Numerical techniques such as

structured body-fitted curvilinear grids and multiblock methods have been developed

as a remedy to allow application of FDM to solve partial differential equations in com-

plex domains [6, 15, 16, 31, 44]. The process of designing a good quality body-fitted

grid can be very labour-intensive and may be impractical from the perspective of overall

computational cost and time. Similarly, the multiblock technique is somewhat difficult

to implement since it needs considerable experience to generate a good quality grid

system for irregular shaped domains.

The Cartesian cut-stencil FDM (CCST-FDM) is capable of solving PDEs in irregular

shaped domains. The fundamental details of this finite difference formulation have

been presented in Esmaeilzadeh [12] and Esmaeilzadeh et al. [13]. This method, in

its basic formulation, employs first- and second-order differencing schemes to approx-


