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Abstract. In this work, we revisit the adaptive L1 time-stepping scheme for solv-
ing the time-fractional Allen-Cahn equation in the Caputo’s form. The L1 implicit

scheme is shown to preserve a variational energy dissipation law on arbitrary nonuni-

form time meshes by using the recent discrete analysis tools, i.e., the discrete orthog-
onal convolution kernels and discrete complementary convolution kernels. Then the

discrete embedding techniques and the fractional Grönwall inequality are applied

to establish an L2 norm error estimate on nonuniform time meshes. An adaptive
time-stepping strategy according to the dynamical feature of the system is presented

to capture the multi-scale behaviors and to improve the computational performance.
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1. Introduction

We consider the numerical approximations for time-fractional Allen-Cahn (TFAC)

equation

∂αt Φ = −κµ, where the potential µ := f(Φ)− ǫ2∆Φ (1.1)

on a bounded regular domain x ∈ Ω ⊆ R
2 subject to periodic boundary conditions.
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Here, ǫ > 0 is an interface width parameter, κ > 0 is the mobility coefficient, and

the nonlinear bulk force f(Φ) is taken as the polynomial double-well potential f(Φ) =
Φ3 −Φ. The notation ∂αt := C

0D
α
t in (1.1) represents the fractional Caputo derivative of

order α with respect to t, that is,

(∂αt v) (t) :=
(

I1−α
t v′

)

(t), 0 < α < 1, (1.2)

in which the fractional Riemann-Liouville integral Iβ
t of order β > 0 is given by

(

Iβ
t v
)

(t) :=

∫ t

0
ωβ(t− s)v(s) ds, (1.3)

where

ωβ(t) :=
tβ−1

Γ(β)
.

As well known, the energy dissipation law is an important and essential property

of the classical phase field models. Recall the following Ginzburg-Landau energy func-

tional [1]:

E[Φ] :=

∫

Ω

(

ǫ2

2
|∇Φ|2 + F (Φ)

)

dx, (1.4)

where

F (Φ) =
1

4

(

Φ2 − 1
)2
.

The classical Allen-Cahn (AC) model preserves the following energy dissipation law:

dE

dt
+ κ

∥

∥

∥

∥

δE

δΦ

∥

∥

∥

∥

2

= 0, t > 0, (1.5)

where the inner product

(u, v) :=

∫

Ω
uv dx,

and the associated L2 norm ‖u‖ :=
√

(u, u) for all u, v ∈ L2(Ω). It is of great interest

to design some numerical algorithms that preserve the energy dissipation law at each

time level because non-energy-stable numerical schemes would not accurately capture

the coarsening dynamics or lead to numerical instability.

For the classical gradient flows, there are several effective strategies to develop en-

ergy stable numerical algorithms, such as the convex splitting method [2,26], stabiliza-

tion technique [23,27], invariant energy quadratization approach [5,6] and scalar aux-

iliary variable formulation [22]. Compared with the classical phase field models, how-

ever, the theoretical works regarding the energy stable property of the time-fractional

phase field models are limited. It was shown [25, Theorem 4.2] that the TFAC model

(1.1) admits the maximum bound principle

|Φ(x, t)| ≤ 1, if |Φ(x, 0)| ≤ 1, t > 0, (1.6)


