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Abstract. We develop an efficient and accurate spectral deferred correction (SDC)
method for fractional differential equations (FDEs) by extending the algorithm in

[14] for classical ordinary differential equations (ODEs). Specifically, we discretize
the resulted Picard integral equation by the SDC method and accelerate the con-

vergence of the SDC iteration by using the generalized minimal residual algorithm

(GMRES). We first derive the correction matrix of the SDC method for FDEs and
analyze the convergence region of the SDC method. We then present several numer-

ical examples for stiff and non-stiff FDEs including fractional linear and nonlinear

ODEs as well as fractional phase field models, demonstrating that the accelerated
SDC method is much more efficient than the original SDC method, especially for

stiff problems. Furthermore, we resolve the issue of low accuracy arising from the

singularity of the solutions by using a geometric mesh, leading to highly accurate
solutions compared to uniform mesh solutions at almost the same computational

cost. Moreover, for long-time integration of FDEs, using the geometric mesh leads
to great computational savings as the total number of degrees of freedom required

is relatively small.
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1. Introduction

Fractional differential equations (FDEs) have been effective in modeling anomalous

diffusion as well as capturing long-range spatio-temporal interactions [11,24,26]. An-

alytic solutions of some FDEs are typically obtained by using special functions (e.g.,

Wright functions) for simple linear problems [22]. However, it is usually difficult to ob-

tain analytic solutions for more complex FDEs, especially for nonlinear problems. For

time-fractional differential equations, high-order numerical methods including the fi-

nite difference method [4,10,18,19,29] and the polynomial based spectral method [17]

have been developed for smooth solutions. However, due to the singular kernel of the

fractional operator, the solutions of FDEs are usually of low regularity in the usual

Sobolev space. To resolve this issue, Jin et al. used corrections to restore the theo-

retical high-order convergence rate [15] (see also [20, 21]). A different approach

developed by Zayernouri and Karniadakis [34] was to use the poly-fractonomials as

basis functions, which match the singularity of the kernel, giving spectral accuracy

for a smooth source term; a rigorous error analysis was established in [6]. Neverthe-

less, this method cannot be extended to more general FDEs. Moreover, none of the

aforementioned methods can easily handle the long-time evolution since it is compu-

tationally expensive and has high memory requirement due to the non-locality of the

fractional operator. A number of papers using the finite difference method have been

published to address this issue by using the FFT based discrete convolution or repre-

senting the discrete weights into integral forms [12, 13, 32, 33, 35]. However, spectral

methods, especially multi-domain spectral methods are more favorable for fractional

problems, giving much higher accuracy than local methods [5,16].

In this work, we aim at developing an efficient and accurate numerical scheme us-

ing the spectral deferred correction (SDC) method for FDEs. The SDC method was first

introduced by Dutt et al. in [9] to construct high-order stable methods for solving ordi-

nary differential equations (ODEs). Some early work on using the SDC method for non-

local equations or FDEs can be found in [3, 23, 25, 31]. In these works, again, the low

regularity of the solutions was not addressed explicitly. It was shown that the conver-

gence rate is O(∆T (2−α)(k+1)) (or O(∆T (2−α)+k)) for the uniform mesh (or the Gauss-

Lobatto mesh) in [23] while the convergence rate is O(∆Tmin(p+1+α,α(k+1)+δ)), δ = 1
or 2 in [3], where ∆T is the length of the subdomain, α is the order of the time frac-

tional operator, k is the number of SDC iterations and p is the degree of the polynomial

used for the SDC scheme. More details about these parameters will be given in the next

section. This means that there is an increase of the order of 2− α, 1 or α for each iter-

ation for the global error. However, this fails and the so called order reduction occurs

when solving stiff problems. Moreover, it is not computationally efficient to solve large

systems by using the SDC methods developed in these works.

In the current work, we extend the techniques in [14] (see also [27]) for classical

ODEs to fractional ODEs. In particular, we use the SDC method to discretize the time

fractional operator for the fractional initial and/or boundary problems, and accelerate

the convergence of the SDC iteration with the generalized minimal residual (GMRES)


