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Abstract. For a prescribed set of lacunary data {(xν , fν , f
′′

ν ) : ν = 0, 1, . . . , N} with

equally spaced knot sequence in the unit interval, we show the existence of a fam-

ily of fractal splines Sα
b ∈ C3[0, 1] satisfying Sα

b (xν) = fν , (Sα
b )

(2)(xν) = f ′′

ν for
ν = 0, 1, . . . , N and suitable boundary conditions. To this end, the unique quintic

spline introduced by A. Meir and A. Sharma [SIAM J. Numer. Anal. 10(3) 1973,
pp. 433-442] is generalized by using fractal functions with variable scaling pa-

rameters. The presence of scaling parameters that add extra “degrees of freedom”,

self-referentiality of the interpolant, and “fractality” of the third derivative of the in-
terpolant are additional features in the fractal version, which may be advantageous

in applications. If the lacunary data is generated from a function Φ satisfying certain

smoothness condition, then for suitable choices of scaling factors, the corresponding
fractal spline Sα

b satisfies ‖Φr − (Sα
b )

(r)‖∞ → 0 for 0 ≤ r ≤ 3, as the number of

partition points increases.
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1. Introduction

Through his land mark papers [1,3], Barnsley commenced the study of fractal inter-

polation by using the framework of Iterated Function System (IFS). Since then, many

researchers have explored the technique and earnestly attempted to generalize the no-

tion of Fractal Interpolation Function (FIF) in many different ways. As a new type of in-

terpolant, FIF enjoys more advantages than the classical interpolation methods, which

are based on polynomials, trigonometric functions, rational functions, and splines. To

put in a nutshell, the main advantages of FIFs over traditional nonrecursive interpolants
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are: (i) they provide a method to render non-smooth approximants (ii) by suitable

selection of parameters of the underlying IFS, FIFs can be made smooth and these

smooth FIFs include traditional interpolants as special cases (iii) interpolation scheme

produced by fractal functions can have local or global dependence on data points, de-

pending on the choice of scaling factors (iv) interpolants possess self-referentiality (v)

the interpolant or a certain derivative of it has a non-integer box-counting dimension,

which can be controlled by scaling factors.

If the IFS is chosen appropriately in terms of a prescribed continuous function f ,

then the notion of fractal interpolation can be used to produce a family of fractal

functions {fα}, which includes f as a very special case. This was first observed by

Barnsley and later popularized by Navascués through a series of papers (see, for in-

stance, [9, 10]). The free parameter α, which is a suitable vector in the Euclidean

space, enables us to preserve or modify properties of the original function f . In par-

ticular, each element of this class can be made to preserve smoothness of the original.

The methodology is so versatile and the corresponding notion of α-fractal function acts

as a medium by which the theory of fractal interpolation overlaps and interacts quite

fruitfully with many other fields of mathematics. In the perspective of numerical anal-

ysis, the notion of α-fractal function is used to generalize some well-known traditional

interpolation techniques such as Hermite interpolation and splines [5, 11], but not ex-

plored in the area of lacunary interpolation. Furthermore, in much of the researches

in fractal functions, the free parameters termed scaling factors, which have decisive

influence on the properties of the “perturbed function”, are restricted to be constants.

Deriving principal influence from these facts, the present article targets to invite fractal

functions with variable scalings to the field of lacunary interpolation.

To achieve the intended goal, a family of fractal splines is constructed as fractal

perturbation (having function scaling parameters) of a quintic spline with C3-continuity

introduced in [8]. This perturbation process allows one to replace the unicity of the

traditional quintic spline that solves the lacunary interpolation problem with unicity up

to a particular choice of scaling vector. This has practical advantage: the lack of unicity

opens up the possibility of choosing an interpolant that fit a certain application best, for

instance, in a problem that involves both approximation and optimization. Further, in

contrast to the traditional quintic spline S ∈ C3(I), the perturbed function Sα
b ∈ C3(I)

has the property that its third derivative (Sα
b )

(3) may reveal, in general, non-smooth

or fractal characteristic which can be quantified in terms of Minkowski dimension [6].

The fractal characteristic of the interpolant may be explored in various nonlinear and

nonequilibrium phenomena. On the other hand, for suitable choice of scaling functions,

the fractal spline introduced herein has same approximation properties as that of its

classical counterpart. Thus, the current article may be considered as a humble attempt

to (i) re-investigate [8] using fractal interpolation, a methodology which is not yet very

familiar to the “traditional” numerical analysts, (ii) reiterate the ubiquity of fractal

function by taking lacunary interpolation - a field where fractal splines are not yet

explored - as a medium, and (iii) pronounce that approximation by fractal functions

can provide more flexibility, which may be exploited in various practical applications.
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