
Numer. Math. Theor. Meth. Appl. Vol. 10, No. 3, pp. 489-519
doi: 10.4208/nmtma.2017.m1525 August 2017

Stability of Finite Difference Schemes for

Hyperbolic Initial Boundary Value Problems:

Numerical Boundary Layers

Benjamin Boutin1,∗ and Jean-François Coulombel2

1 IRMAR (UMR CNRS 6625), Université de Rennes, Campus de Beaulieu, 35042
Rennes Cedex, France
2 CNRS, Université de Nantes, Laboratoire de Mathématiques Jean Leray
(CNRS UMR6629), 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3,
France

Received 14 October 2015; Accepted (in revised version) 15 February 2017

Abstract. In this article, we give a unified theory for constructing boundary layer ex-
pansions for discretized transport equations with homogeneous Dirichlet boundary con-
ditions. We exhibit a natural assumption on the discretization under which the numer-
ical solution can be written approximately as a two-scale boundary layer expansion. In
particular, this expansion yields discrete semigroup estimates that are compatible with
the continuous semigroup estimates in the limit where the space and time steps tend to
zero. The novelty of our approach is to cover numerical schemes with arbitrarily many
time levels.
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1. Introduction and main result

1.1. Introduction

In this article, we are interested in discretizations of transport equations by means of
finite difference schemes. When implemented, such numerical schemes require numerical
boundary conditions which sometimes can not be deduced from the PDE problem under
consideration. This difficulty gives rise to several strategies for which it is crucial to un-
derstand whether the resulting numerical schemes is stable and/or consistent. We shall
mainly be concerned here with stability issues and refer to [11] for convergence results.

The analysis of numerical boundary conditions for hyperbolic equations is a delicate
subject for which several definitions of stability can be adopted. Any such definition relies
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on the choice of a given topology that is a discrete analogue of the norm of some functional
space in which the underlying continuous problem is known to be well-posed. The stability
theory for numerical boundary conditions developed in [8], though rather natural in view
of the results of [15] for partial differential equations, may have suffered from its “techni-
cality”. As TREFETHEN and EMBREE [19, chapter 34] say: “[. . . ] the term GKS-stable is quite
complicated. This is a special definition of stability, [. . . ], that involves exponential decay
factors with respect to time and other algebraic terms that remove it significantly from the
more familiar notion of bounded norms of powers”. More precisely, the definition of stability
in [8] corresponds to norms of ℓ2t,x type for the numerical solution (t denotes time and
x denotes the space variable), while in many problems of evolutionary type one is more
used to the ℓ∞t (ℓ

2
x) topology arising from symmetry and integration by parts arguments.

In terms of operator theory, the definition of stability in [8] corresponds to resolvent esti-
mates where one eventually proves estimates for the resolvent (z I − T )−1 of some fixed
bounded operator T , while the more familiar notion of bounded norms of powers corre-
sponds to semigroup estimates where one wishes to prove that T is power bounded. The
links between such resolvent and semigroup estimates have been a rich subject both in the
numerical analysis and operator theory communities. We refer for instance to [16,18] for
various results in this direction.

A natural- though delicate- question in the theory of hyperbolic boundary value prob-
lems is to pass from GKS type (that is, resolvent) estimates to semigroup estimates. In the
context of partial differential equations, this problem has received a somehow final answer
in [17], see references therein for historical comments on this problem. In the context of
numerical schemes, the derivation of semigroup estimates is not as well understood as for
partial differential equations. Semigroup estimates have been derived in [21] for discrete
scalar equations, and in [2] for systems of equations. However, the analysis in [21] and [2]
only deals with schemes with two time levels, and does not extend as such to schemes with
three or more time levels (e.g., the leap-frog scheme). A first attempt to deal with numeri-
cal schemes with three or more time levels has been made by one of the authors in [5], but
some technical assumptions still exclude applying the theory to, for instance, numerical
schemes based on the Adams-Bashforth integration methods.

In this article, we focus on Dirichlet boundary conditions and derive semigroup esti-
mates for a class of numerical schemes with arbitrarily many time levels. The reasons why
we choose Dirichlet boundary conditions are twofold. First, these are the only boundary
conditions for which, independently of the (stable) numerical scheme that is used for dis-
cretizing a scalar transport equation, stability in the sense of GKS is known to hold. The
latter result dates back to [10] and is recalled later on. Second, homogeneous Dirichlet
boundary conditions typically give rise to numerical boundary layers and therefore to an
accurate description of the numerical solution by means of a two-scale expansion. We
combine these two favorable aspects of the Dirichlet boundary conditions in our derivation
of a semigroup estimate.

The study of numerical boundary layers has received much attention in the past decades,
including for nonlinear systems of conservation laws, see for instance [3,6,9]. As far as we
know, all previous studies have considered numerical schemes with a three point stencil


